
Jin Billy Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7522149/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself. Science, 2015, 349, 1115-1120.	12.6	661
2	Dynamic landscape and regulation of RNA editing in mammals. Nature, 2017, 550, 249-254.	27.8	495
3	A-to-I RNA editing occurs at over a hundred million genomic sites, located in a majority of human genes. Genome Research, 2014, 24, 365-376.	5.5	492
4	Genome-Wide Identification of Human RNA Editing Sites by Parallel DNA Capturing and Sequencing. Science, 2009, 324, 1210-1213.	12.6	483
5	RADAR: a rigorously annotated database of A-to-I RNA editing. Nucleic Acids Research, 2014, 42, D109-D113.	14.5	477
6	The Genomic Landscape and Clinical Relevance of A-to-I RNA Editing in Human Cancers. Cancer Cell, 2015, 28, 515-528.	16.8	426
7	Accurate identification of human Alu and non-Alu RNA editing sites. Nature Methods, 2012, 9, 579-581.	19.0	357
8	Identifying RNA editing sites using RNA sequencing data alone. Nature Methods, 2013, 10, 128-132.	19.0	322
9	Reliable Identification of Genomic Variants from RNA-Seq Data. American Journal of Human Genetics, 2013, 93, 641-651.	6.2	319
10	Enhanced Specificity and Efficiency of the CRISPR/Cas9 System with Optimized sgRNA Parameters in Drosophila. Cell Reports, 2014, 9, 1151-1162.	6.4	284
11	Effect of predicted protein-truncating genetic variants on the human transcriptome. Science, 2015, 348, 666-669.	12.6	252
12	Genetic conflict reflected in tissue-specific maps of genomic imprinting in human and mouse. Nature Genetics, 2015, 47, 544-549.	21.4	221
13	The landscape of genomic imprinting across diverse adult human tissues. Genome Research, 2015, 25, 927-936.	5.5	216
14	Evolutionary analysis reveals regulatory and functional landscape of coding and non-coding RNA editing. PLoS Genetics, 2017, 13, e1006563.	3.5	188
15	Precise RNA editing by recruiting endogenous ADARs with antisense oligonucleotides. Nature Biotechnology, 2019, 37, 133-138.	17.5	186
16	Rewriting the transcriptome: adenosine-to-inosine RNA editing by ADARs. Genome Biology, 2017, 18, 205.	8.8	161
17	Comment on "Widespread RNA and DNA Sequence Differences in the Human Transcriptome― Science, 2012, 335, 1302-1302.	12.6	155
18	Digital RNA allelotyping reveals tissue-specific and allele-specific gene expression in human. Nature Methods, 2009, 6, 613-618.	19.0	149

Jin Billy Li

#	Article	IF	CITATIONS
19	Identification of phagocytosis regulators using magnetic genome-wide CRISPR screens. Nature Genetics, 2018, 50, 1716-1727.	21.4	135
20	Deficiency of microRNA <i>miR-34a</i> expands cell fate potential in pluripotent stem cells. Science, 2017, 355, .	12.6	129
21	Editing of Cellular Self-RNAs by Adenosine Deaminase ADAR1 Suppresses Innate Immune Stress Responses. Journal of Biological Chemistry, 2016, 291, 6158-6168.	3.4	127
22	Molecular definition of a metastatic lung cancer state reveals a targetable CD109–Janus kinase–Stat axis. Nature Medicine, 2017, 23, 291-300.	30.7	126
23	Deciphering the functions and regulation of brain-enriched A-to-I RNA editing. Nature Neuroscience, 2013, 16, 1518-1522.	14.8	125
24	Efficient and precise editing of endogenous transcripts with SNAP-tagged ADARs. Nature Methods, 2018, 15, 535-538.	19.0	113
25	Quantifying RNA allelic ratios by microfluidic multiplex PCR and sequencing. Nature Methods, 2014, 11, 51-54.	19.0	81
26	The evolution and adaptation of A-to-I RNA editing. PLoS Genetics, 2017, 13, e1007064.	3.5	81
27	Genetic mapping uncovers cis-regulatory landscape of RNA editing. Nature Communications, 2015, 6, 8194.	12.8	76
28	Identification of human RNA editing sites: A historical perspective. Methods, 2016, 107, 42-47.	3.8	66
29	Protein recoding by ADAR1-mediated RNA editing is not essential for normal development and homeostasis. Genome Biology, 2017, 18, 166.	8.8	64
30	Global landscape and genetic regulation of RNA editing in cortical samples from individuals with schizophrenia. Nature Neuroscience, 2019, 22, 1402-1412.	14.8	63
31	Multiplex padlock targeted sequencing reveals human hypermutable CpG variations. Genome Research, 2009, 19, 1606-1615.	5.5	62
32	Allelic Expression of Deleterious Protein-Coding Variants across Human Tissues. PLoS Genetics, 2014, 10, e1004304.	3.5	60
33	Novel RNA Modifications in the Nervous System: Form and Function. Journal of Neuroscience, 2014, 34, 15170-15177.	3.6	56
34	DDX6 Represses Aberrant Activation of Interferon-Stimulated Genes. Cell Reports, 2017, 20, 819-831.	6.4	54
35	Adenosine-to-inosine RNA editing by ADAR1 is essential for normal murine erythropoiesis. Experimental Hematology, 2016, 44, 947-963.	0.4	52
36	CLUSTER guide RNAs enable precise and efficient RNA editing with endogenous ADAR enzymes in vivo. Nature Biotechnology, 2022, 40, 759-768.	17.5	49

Jin Billy Li

#	Article	IF	CITATIONS
37	ADAR1: A New Target for Immuno-oncology Therapy. Molecular Cell, 2019, 73, 866-868.	9.7	46
38	Illuminating spatial A-to-I RNA editing signatures within the <i>Drosophila</i> brain. Proceedings of the United States of America, 2019, 116, 2318-2327.	7.1	45
39	Regulation of gene expression and RNA editing in Drosophila adapting to divergent microclimates. Nature Communications, 2017, 8, 1570.	12.8	43
40	Unbiased Identification of trans Regulators of ADAR and A-to-I RNA Editing. Cell Reports, 2020, 31, 107656.	6.4	41
41	Abnormalities in A-to-I RNA editing patterns in CNS injuries correlate with dynamic changes in cell type composition. Scientific Reports, 2017, 7, 43421.	3.3	40
42	Adar RNA editing-dependent and -independent effects are required for brain and innate immune functions in Drosophila. Nature Communications, 2020, 11, 1580.	12.8	39
43	Activity-Dependent A-to-I RNA Editing in Rat Cortical Neurons. Genetics, 2012, 192, 281-287.	2.9	36
44	Cis Regulatory Effects on A-to-I RNA Editing in Related Drosophila Species. Cell Reports, 2015, 11, 697-703.	6.4	31
45	The THO Complex Coordinates Transcripts for Synapse Development and Dopamine Neuron Survival. Cell, 2018, 174, 1436-1449.e20.	28.9	25
46	The Role of Abcb5 Alleles in Susceptibility to Haloperidol-Induced Toxicity in Mice and Humans. PLoS Medicine, 2015, 12, e1001782.	8.4	23
47	Zinc Finger RNA-Binding Protein Zn72D Regulates ADAR-Mediated RNA Editing in Neurons. Cell Reports, 2020, 31, 107654.	6.4	20
48	Updates to the RNA mapping database (RMDB), version 2. Nucleic Acids Research, 2018, 46, D375-D379.	14.5	19
49	RNA editing restricts hyperactive ciliary kinases. Science, 2021, 373, 984-991.	12.6	11
50	Learning cis-regulatory principles of ADAR-based RNA editing from CRISPR-mediated mutagenesis. Nature Communications, 2021, 12, 2165.	12.8	9
51	XenMine: A genomic interaction tool for the Xenopus community. Developmental Biology, 2017, 426, 155-164.	2.0	6
52	A-To-I RNA Editing By ADAR1 Is Essential For Hematopoiesis. Blood, 2013, 122, 1199-1199.	1.4	1