
Meenakshi A Chellaiah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/752205/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CD44: A Multifunctional Cell Surface Adhesion Receptor Is a Regulator of Progression and Metastasis of Cancer Cells. Frontiers in Cell and Developmental Biology, 2017, 5, 18.	3.7	569
2	Rho-A Is Critical for Osteoclast Podosome Organization, Motility, and Bone Resorption. Journal of Biological Chemistry, 2000, 275, 11993-12002.	3.4	241
3	Mechanisms of osteopontin and CD44 as metastatic principles in prostate cancer cells. Molecular Cancer, 2007, 6, 18.	19.2	130
4	Phosphatidylinositol 3,4,5-Trisphosphate Directs Association of Src Homology 2-containing Signaling Proteins with Gelsolin. Journal of Biological Chemistry, 2001, 276, 47434-47444.	3.4	93
5	Regulation of Actin Ring Formation by Rho GTPases in Osteoclasts. Journal of Biological Chemistry, 2005, 280, 32930-32943.	3.4	78
6	Invadopodia and Matrix Degradation, a New Property of Prostate Cancer Cells during Migration and Invasion. Journal of Biological Chemistry, 2008, 283, 13856-13866.	3.4	73
7	Rho-dependent Rho Kinase Activation Increases CD44 Surface Expression and Bone Resorption in Osteoclasts. Journal of Biological Chemistry, 2003, 278, 29086-29097.	3.4	71
8	Integrin αvβ3 and CD44 pathways in metastatic prostate cancer cells support osteoclastogenesis via a Runx2/Smad 5/receptor activator of NF-κB ligand signaling axis. Molecular Cancer, 2012, 11, 66.	19.2	70
9	Regulation of podosomes by integrin αvl²3 and Rho GTPase-facilitated phosphoinositide signaling. European Journal of Cell Biology, 2006, 85, 311-317.	3.6	62
10	Actin polymerization modulates CD44 surface expression, MMP-9 activation, and osteoclast function. Journal of Cellular Physiology, 2007, 213, 710-720.	4.1	62
11	Characterization of the expression of variant and standard CD44 in prostate cancer cells: Identification of the possible molecular mechanism of CD44/MMP9 complex formation on the cell surface. Journal of Cellular Biochemistry, 2009, 108, 272-284.	2.6	57
12	Phosphorylation of a Wiscott-Aldrich Syndrome Protein-associated Signal Complex Is Critical in Osteoclast Bone Resorption. Journal of Biological Chemistry, 2007, 282, 10104-10116.	3.4	55
13	Regulation of Sealing Ring Formation by L-plastin and Cortactin in Osteoclasts. Journal of Biological Chemistry, 2010, 285, 29911-29924.	3.4	54
14	Regulation of Erk1/2 activation by osteopontin in PC3 human prostate cancer cells. Molecular Cancer, 2010, 9, 260.	19.2	53
15	Osteopontin and MMP9: Associations with VEGF Expression/Secretion and Angiogenesis in PC3 Prostate Cancer Cells. Cancers, 2013, 5, 617-638.	3.7	51
16	Lipopolysaccharide- TLR-4 Axis regulates Osteoclastogenesis independent of RANKL/RANK signaling. BMC Immunology, 2021, 22, 23.	2.2	48
17	Osteoclastogenesis in periodontal diseases: Possible mediators and mechanisms. Journal of Oral Biosciences, 2020, 62, 123-130.	2.2	45
18	Activation of Src kinase by protein–tyrosine phosphatase–PEST in osteoclasts: Comparative analysis of the effects of bisphosphonate and protein–tyrosine phosphatase inhibitor on Src activation in vitro. Journal of Cellular Physiology, 2009, 220, 382-393.	4.1	37

MEENAKSHI A CHELLAIAH

#	Article	lF	CITATIONS
19	Membrane Localization of Membrane Type 1 Matrix Metalloproteinase by CD44 Regulates the Activation of Pro-Matrix Metalloproteinase 9 in Osteoclasts. BioMed Research International, 2013, 2013, 1-13.	1.9	35
20	Characterization of CD44 intracellular domain interaction with RUNX2 in PC3 human prostate cancer cells. Cell Communication and Signaling, 2019, 17, 80.	6.5	33
21	Polyphosphoinositides-dependent regulation of the osteoclast actin cytoskeleton and bone resorption. BMC Cell Biology, 2004, 5, 19.	3.0	29
22	In vitro BMP2 stimulation of osteoblast citrate production in concert with mineralized bone nodule formation. Journal of Regenerative Medicine & Tissue Engineering, 2015, 4, 2.	1.5	21
23	Peptidomimetic inhibitors of L-plastin reduce the resorptive activity of osteoclast but not the bone forming activity of osteoblasts in vitro. PLoS ONE, 2018, 13, e0204209.	2.5	19
24	Androgen receptor expression reduces stemness characteristics of prostate cancer cells (PC3) by repression of CD44 and SOX2. Journal of Cellular Biochemistry, 2019, 120, 2413-2428.	2.6	18
25	C-phycocyanin attenuates RANKL-induced osteoclastogenesis and bone resorption in vitro through inhibiting ROS levels, NFATc1 and NF-κB activation. Scientific Reports, 2020, 10, 2513.	3.3	17
26	Dramatic inhibition of osteoclast sealing ring formation and bone resorption in vitro by a WASP-peptide containing pTyr294 amino acid. Journal of Molecular Signaling, 2008, 3, 4.	0.5	16
27	L-plastin phosphorylation regulates the early phase of sealing ring formation by actin bundling process in mouse osteoclasts. Experimental Cell Research, 2018, 372, 73-82.	2.6	14
28	Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells. PLoS ONE, 2019, 14, e0225598.	2.5	13
29	L-Plastin deficiency produces increased trabecular bone due to attenuation of sealing ring formation and osteoclast dysfunction. Bone Research, 2020, 8, 3.	11.4	10
30	Engineering of L-Plastin Peptide-Loaded Biodegradable Nanoparticles for Sustained Delivery and Suppression of Osteoclast Function In Vitro. International Journal of Cell Biology, 2019, 2019, 1-13.	2.5	8
31	Identification of sequence-specific interactions of the CD44-intracellular domain with RUNX2 in the transcription of matrix metalloprotease-9 in human prostate cancer cells. , 2020, 3, 586-602.		6
32	Peptidomimetic inhibitor of L-plastin reduces osteoclastic bone resorption in aging female mice. Bone Research, 2021, 9, 22.	11.4	5
33	Methylsulfonylmethane Increases the Alveolar Bone Density of Mandibles in Aging Female Mice. Frontiers in Physiology, 2021, 12, 708905.	2.8	4
34	L-Plastin Phosphorylation: Possible Regulation by a TNFR1 Signaling Cascade in Osteoclasts. Cells, 2021, 10, 2432.	4.1	3
35	Osteoclast Cytoskeleton, Podosome, Motility, Attachment, and Signaling by Receptors. , 2020, , 236-250.		0