Quanquan Pang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7521938/publications.pdf Version: 2024-02-01

ΟΠΑΝΟΠΑΝ ΡΑΝΟ

#	Article	lF	CITATIONS
1	Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nature Energy, 2016, 1, .	19.8	1,710
2	A highly efficient polysulfide mediator for lithium–sulfur batteries. Nature Communications, 2015, 6, 5682.	5.8	1,691
3	Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nature Communications, 2014, 5, 4759.	5.8	1,122
4	A facile surface chemistry route to a stabilized lithium metal anode. Nature Energy, 2017, 2, .	19.8	864
5	A Nitrogen and Sulfur Dualâ€Đoped Carbon Derived from Polyrhodanine@Cellulose for Advanced Lithium–Sulfur Batteries. Advanced Materials, 2015, 27, 6021-6028.	11.1	703
6	Tuning Transition Metal Oxide–Sulfur Interactions for Long Life Lithium Sulfur Batteries: The "Goldilocks―Principle. Advanced Energy Materials, 2016, 6, 1501636.	10.2	623
7	Interwoven MXene Nanosheet/Carbonâ€Nanotube Composites as Li–S Cathode Hosts. Advanced Materials, 2017, 29, 1603040.	11.1	606
8	Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li–S batteries. Nature Energy, 2018, 3, 783-791.	19.8	421
9	A graphene-like metallic cathode host for long-life and high-loading lithium–sulfur batteries. Materials Horizons, 2016, 3, 130-136.	6.4	409
10	Long-Life and High-Areal-Capacity Li–S Batteries Enabled by a Light-Weight Polar Host with Intrinsic Polysulfide Adsorption. ACS Nano, 2016, 10, 4111-4118.	7.3	376
11	Advances in metal–organic framework coatings: versatile synthesis and broad applications. Chemical Society Reviews, 2020, 49, 3142-3186.	18.7	327
12	Review—The Importance of Chemical Interactions between Sulfur Host Materials and Lithium Polysulfides for Advanced Lithium-Sulfur Batteries. Journal of the Electrochemical Society, 2015, 162, A2567-A2576.	1.3	294
13	Lithium-sulfur batteries. MRS Bulletin, 2014, 39, 436-442.	1.7	284
14	A Comprehensive Approach toward Stable Lithium–Sulfur Batteries with High Volumetric Energy Density. Advanced Energy Materials, 2017, 7, 1601630.	10.2	277
15	An InÂVivo Formed Solid Electrolyte Surface Layer Enables Stable Plating of Li Metal. Joule, 2017, 1, 871-886.	11.7	271
16	Lightweight Metallic MgB2 Mediates Polysulfide Redox and Promises High-Energy-Density Lithium-Sulfur Batteries. Joule, 2019, 3, 136-148.	11.7	256
17	Electrolyte solutions design for lithium-sulfur batteries. Joule, 2021, 5, 2323-2364.	11.7	199
18	Directing the Lithium–Sulfur Reaction Pathway via Sparingly Solvating Electrolytes for High Energy Density Batteries. ACS Central Science, 2017, 3, 605-613.	5.3	164

Quanquan Pang

#	Article	IF	CITATIONS
19	Methods and Protocols for Electrochemical Energy Storage Materials Research. Chemistry of Materials, 2017, 29, 90-105.	3.2	141
20	Stabilizing Lithium Plating by a Biphasic Surface Layer Formed Inâ€Situ. Angewandte Chemie - International Edition, 2018, 57, 9795-9798.	7.2	134
21	Inhibiting Polysulfide Shuttle in Lithium–Sulfur Batteries through Lowâ€Ionâ€Pairing Salts and a Triflamide Solvent. Angewandte Chemie - International Edition, 2017, 56, 6192-6197.	7.2	109
22	Inhibiting Polysulfide Shuttle in Lithium–Sulfur Batteries through Lowâ€ionâ€Pairing Salts and a Triflamide Solvent. Angewandte Chemie, 2017, 129, 6288-6293.	1.6	82
23	Elastic and Li-ion–percolating hybrid membrane stabilizes Li metal plating. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12389-12394.	3.3	49
24	Stabilizing Lithium Plating by a Biphasic Surface Layer Formed Inâ€Situ. Angewandte Chemie, 2018, 130, 9943-9946.	1.6	39
25	Efforts at Enhancing Bifunctional Electrocatalysis and Related Events for Rechargeable Zincâ€Air Batteries. ChemElectroChem, 2021, 8, 3998-4018.	1.7	36
26	Amine-Wetting-Enabled Dendrite-Free Potassium Metal Anode. ACS Nano, 2022, 16, 7291-7300.	7.3	36
27	Effects of titanium incorporation on phase and electrochemical performance in LiFePO4 cathode material. Electrochimica Acta, 2012, 78, 576-584.	2.6	33
28	Impact of the Mechanical Properties of a Functionalized Cross-Linked Binder on the Longevity of Li–S Batteries. ACS Applied Materials & Interfaces, 2019, 11, 22481-22491.	4.0	22
29	Charge storage mechanisms of cathode materials in rechargeable aluminum batteries. Science China Chemistry, 2021, 64, 1888-1907.	4.2	17
30	Lithiumâ€Sulfur Batteries: Tuning Transition Metal Oxide–Sulfur Interactions for Long Life Lithium Sulfur Batteries: The "Goldilocks―Principle (Adv. Energy Mater. 6/2016). Advanced Energy Materials, 2016, 6, .	10.2	5
31	Introduce Tortuosity to Retain Polysulfides and Suppress Li Dendrites. Matter, 2020, 2, 1363-1365.	5.0	3
32	Efforts at Enhancing Bifunctional Electrocatalysis and Related Events for Rechargeable Zincâ€Air Batteries. ChemElectroChem, 2021, 8, 3996-3996.	1.7	2
33	Coupling Hierarchical Sulfur Composites with in-situ Cross-linked Binder to Build Stable High-areal-capacity Sulfur Cathodes. ECS Meeting Abstracts, 2016, , .	0.0	0
34	A Sulfide Solid Electrolyte Surface Layer Formed Via Electrolyte Additives Enables Stable Plating of Li Metal. ECS Meeting Abstracts, 2017, , .	0.0	0