List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7521819/publications.pdf Version: 2024-02-01

IONCHWA SHIN

#	Article	IF	CITATIONS
1	Photonic topological Lifshitz interfaces. Nanophotonics, 2022, 11, 1211-1217.	2.9	1
2	All-Color Sub-ambient Radiative Cooling Based on Photoluminescence. ACS Photonics, 2022, 9, 1196-1205.	3.2	21
3	Machine learning assisted synthesis of lithium-ion batteries cathode materials. Nano Energy, 2022, 98, 107214.	8.2	24
4	Mechanoresponsive scatterers for high-contrast optical modulation. Nanophotonics, 2022, 11, 2737-2762.	2.9	14
5	Data-driven concurrent nanostructure optimization based on conditional generative adversarial networks. Nanophotonics, 2022, 11, 2865-2873.	2.9	4
6	Photolithographic realization of target nanostructures in 3D space by inverse design of phase modulation. Science Advances, 2022, 8, .	4.7	12
7	Directional radiation for optimal radiative cooling. Optics Express, 2021, 29, 8376.	1.7	17
8	Self-Assembled Nano–Lotus Pod Metasurface for Light Trapping. ACS Photonics, 2021, 8, 1616-1622.	3.2	8
9	Fabrication and characterization of resistive double square loop arrays for ultra-wide bandwidth microwave absorption. Scientific Reports, 2021, 11, 12767.	1.6	6
10	Colloidal deposition of colored daytime radiative cooling films using nanoparticle-based inks. Materials Today Physics, 2021, 21, 100510.	2.9	22
11	Ultrawideband electromagnetic metamaterial absorber utilizing coherent absorptions and surface plasmon polaritons based on double layer carbon metapatterns. Scientific Reports, 2021, 11, 23045.	1.6	15
12	Extreme anti-reflection enhanced magneto-optic Kerr effect microscopy. Nature Communications, 2020, 11, 5937.	5.8	21
13	Ideal spectral emissivity for radiative cooling of earthbound objects. Scientific Reports, 2020, 10, 13038.	1.6	15
14	Laser Synthesis of MOF-Derived Ni@Carbon for High-Performance Pseudocapacitors. ACS Applied Materials & Interfaces, 2020, 12, 39154-39162.	4.0	56
15	Mimicking bio-mechanical principles in photonic metamaterials for giant broadband nonlinearity. Communications Physics, 2020, 3, .	2.0	6
16	Highâ€Contrast Optical Modulation from Strainâ€Induced Nanogaps at 3D Heterogeneous Interfaces. Advanced Science, 2020, 7, 1903708.	5.6	36
17	Broadband metamaterials and metasurfaces: a review from the perspectives of materials and devices. Nanophotonics, 2020, 9, 3165-3196.	2.9	49
18	Spectrally sharp metasurfaces for wide-angle high extinction of green lasers. Optics Express, 2020, 28, 22121.	1.7	2

#	Article	IF	CITATIONS
19	Photo-stimulated charge transfer in contact electrification coupled with plasmonic excitations. Nano Energy, 2019, 65, 104031.	8.2	5
20	Mie resonator method for reliable permittivity measurement of loss-less ceramics in microwave frequency at high temperature. Journal of Applied Physics, 2019, 126, 094101.	1.1	0
21	A General Recipe for Nondispersive Optical Activity in Bilayer Chiral Metamaterials. Advanced Optical Materials, 2019, 7, 1801729.	3.6	7
22	Near-atomically flat, chemically homogeneous, electrically conductive optical metasurface. Nanoscale, 2019, 11, 9580-9586.	2.8	2
23	Metal Nanoparticle Array as a Tunable Refractive Index Material over Broad Visible and Infrared Wavelengths. ACS Photonics, 2018, 5, 1188-1195.	3.2	32
24	Transferrable Plasmonic Au Thin Film Containing Sub-20 nm Nanohole Array Constructed via High-Resolution Polymer Self-Assembly and Nanotransfer Printing. ACS Applied Materials & Interfaces, 2018, 10, 2216-2223.	4.0	22
25	Bimodal phase separated block copolymer/homopolymer blends self-assembly for hierarchical porous metal nanomesh electrodes. Nanoscale, 2018, 10, 100-108.	2.8	17
26	Ultralarge Area Sub-10 nm Plasmonic Nanogap Array by Block Copolymer Self-Assembly for Reliable High-Sensitivity SERS. ACS Applied Materials & Interfaces, 2018, 10, 44660-44667.	4.0	59
27	Pyramidal Metal–dielectric hybrid-structure geometry with an asymmetric TiO2 layer for broadband light absorption and photocatalytic applications. Nano Energy, 2018, 53, 468-474.	8.2	5
28	Finite-difference time-domain analysis of increased penetration depth in optical coherence tomography by wavefront shaping. Biomedical Optics Express, 2018, 9, 3883.	1.5	7
29	Direct Chemical Synthesis of Plasmonic Black Colloidal Gold Superparticles with Broadband Absorption Properties. Nano Letters, 2018, 18, 5927-5932.	4.5	34
30	Bright and vivid plasmonic color filters having dual resonance modes with proper orthogonality. Optics Express, 2018, 26, 27403.	1.7	9
31	Signal self-enhancement by coordinated assembly of gold nanoparticles enables accurate one-step-immunoassays. Nanoscale, 2017, 9, 16476-16484.	2.8	8
32	Optical effective media with independent control of permittivity and permeability based on conductive particles. Applied Physics Letters, 2016, 109, .	1.5	27
33	Broadband giant-refractive-index material based on mesoscopic space-filling curves. Nature Communications, 2016, 7, 12661.	5.8	51
34	Complex Highâ€Aspectâ€Ratio Metal Nanostructures by Secondary Sputtering Combined with Block Copolymer Selfâ€Assembly. Advanced Materials, 2016, 28, 8439-8445.	11.1	26
35	Highly tunable refractive index visible-light metasurface from block copolymer self-assembly. Nature Communications, 2016, 7, 12911.	5.8	143
36	Flexible Near-Field Nanopatterning with Ultrathin, Conformal Phase Masks on Nonplanar Substrates for Biomimetic Hierarchical Photonic Structures. ACS Nano, 2016, 10, 4609-4617.	7.3	58

#	Article	IF	CITATIONS
37	Two-dimensional metal-dielectric hybrid-structured film with titanium oxide for enhanced visible light absorption and photo-catalytic application. Nano Energy, 2016, 21, 115-122.	8.2	21
38	Fast and bright spontaneous emission of Er3+ ions in metallic nanocavity. Nature Communications, 2015, 6, 7080.	5.8	19
39	Aluminum Nanoarrays for Plasmon-Enhanced Light Harvesting. ACS Nano, 2015, 9, 6206-6213.	7.3	82
40	Anisotropic dielectric metamaterial slab as a single-material large-acceptance-angle anti-reflection layer for high-temperature applications. , 2015, , .		0
41	Metamaterial-based light diffuser with deep-subwavelength thickness. , 2015, , .		0
42	Anomalous Rapid Defect Annihilation in Self-Assembled Nanopatterns by Defect Melting. Nano Letters, 2015, 15, 1190-1196.	4.5	37
43	Au–Ag Core–Shell Nanoparticle Array by Block Copolymer Lithography for Synergistic Broadband Plasmonic Properties. ACS Nano, 2015, 9, 5536-5543.	7.3	130
44	Self-aligned deterministic coupling of single quantum emitter to nanofocused plasmonic modes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5280-5285.	3.3	36
45	One-way optical modal transition based on causality in momentum space. Optics Express, 2015, 23, 24997.	1.7	11
46	Synergistic Concurrent Enhancement of Charge Generation, Dissociation, and Transport in Organic Solar Cells with Plasmonic Metal–Carbon Nanotube Hybrids. Advanced Materials, 2015, 27, 1519-1525.	11.1	85
47	Optical vortex arrays from smectic liquid crystals. Optics Express, 2014, 22, 4699.	1.7	37
48	Negativeâ€Tone Block Copolymer Lithography by In Situ Surface Chemical Modification. Small, 2014, 10, 4207-4212.	5.2	6
49	Musselâ€Inspired Plasmonic Nanohybrids for Light Harvesting. Advanced Materials, 2014, 26, 4463-4468.	11.1	72
50	Nanodomain Swelling Block Copolymer Lithography for Morphology Tunable Metal Nanopatterning. Small, 2014, 10, 3742-3749.	5.2	18
51	Nanostructures: Musselâ€Inspired Plasmonic Nanohybrids for Light Harvesting (Adv. Mater. 26/2014). Advanced Materials, 2014, 26, 4596-4596.	11.1	0
52	Full-Field Subwavelength Imaging Using a Scattering Superlens. Physical Review Letters, 2014, 113, 113901.	2.9	81
53	Multicomponent Nanopatterns by Directed Block Copolymer Self-Assembly. ACS Nano, 2013, 7, 8899-8907.	7.3	99
54	Subwavelength light focusing using random nanoparticles. Nature Photonics, 2013, 7, 454-458.	15.6	160

#	Article	IF	CITATIONS
55	Subwavelength Light Control via Wavefront Shaping in Complex Media. , 2013, , .		Ο
56	Optical recoil of asymmetric nano-optical antenna. Optics Express, 2011, 19, 14929.	1.7	5
57	A terahertz metamaterial with unnaturally high refractive index. Nature, 2011, 470, 369-373.	13.7	551
58	Deterministic Nanotexturing by Directional Photofluidization Lithography. Advanced Materials, 2011, 23, 3244-3250.	11.1	37
59	Photofluidic Nanotexturing: Deterministic Nanotexturing by Directional Photofluidization Lithography (Adv. Mater. 29/2011). Advanced Materials, 2011, 23, 3243-3243.	11.1	0
60	Frequency selective heterojunction metal-insulator-metal mirror for surface plasmons. Physical Review B, 2011, 83, .	1.1	3
61	Transmission Through a Scalar Wave Three-Dimensional Electromagnetic Metamaterial and the Implication for Polarization Control. Journal of Nanoscience and Nanotechnology, 2010, 10, 1737-1740.	0.9	3
62	Directional Photofluidization Lithography for Nanoarchitectures with Controlled Shapes and Sizes. Nano Letters, 2010, 10, 296-304.	4.5	72
63	Fabrication of the Funnel-Shaped Three-Dimensional Plasmonic Tip Arrays by Directional Photofluidization Lithography. ACS Nano, 2010, 4, 7175-7184.	7.3	52
64	One-Dimensional Metal Nanowire Assembly via Block Copolymer Soft Graphoepitaxy. Nano Letters, 2010, 10, 3500-3505.	4.5	102
65	Extraordinary Magnetic Field Enhancement with Metallic Nanowire: Role of Surface Impedance in Babinet's Principle for Sub-Skin-Depth Regime. Physical Review Letters, 2009, 103, 263901.	2.9	49
66	Two-dimensionally relocatable microfiber-coupled photonic crystal resonator. Optics Express, 2009, 17, 13009.	1.7	13
67	Three-Dimensional Metamaterials with an Ultrahigh Effective Refractive Index over a Broad Bandwidth. Physical Review Letters, 2009, 102, 093903.	2.9	128
68	Three-dimensional electromagnetic metamaterials that homogenize to uniform non-Maxwellian media. Physical Review B, 2007, 76, .	1.1	31
69	Cut-Through Metal Slit Array as an Anisotropic Metamaterial Film. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12, 1116-1122.	1.9	51
70	Conditions for designing single-mode air-core waveguides in three-dimensional photonic crystals. Applied Physics Letters, 2006, 89, 161103.	1.5	6
71	Conditions for self-collimation in three-dimensional photonic crystals. Optics Letters, 2005, 30, 2397.	1.7	34
72	Simple geometric criterion to predict the existence of surface modes in air-core photonic-bandgap fibers. Optics Express, 2004, 12, 1864.	1.7	34

#	Article	IF	CITATIONS
73	Simulations of the effect of the core ring on surface and air-core modes in photonic bandgap fibers. Optics Express, 2004, 12, 3436.	1.7	24
74	Designing air-core photonic-bandgap fibers free of surface modes. IEEE Journal of Quantum Electronics, 2004, 40, 551-556.	1.0	44