Anne D Hafstad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7521587/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Overexpression of NOX2 Exacerbates AngII-Mediated Cardiac Dysfunction and Metabolic Remodelling. Antioxidants, 2022, 11, 143.	2.2	2
2	Guidelines on models of diabetic heart disease. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 323, H176-H200.	1.5	20
3	Diet-induced obese mouse hearts tolerate an acute high-fatty acid exposure that also increases ischemic tolerance. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 319, H682-H693.	1.5	6
4	NADPH Oxidase 2 Mediates Myocardial Oxygen Wasting in Obesity. Antioxidants, 2020, 9, 171.	2.2	10
5	3-Weeks of Exercise Training Increases Ischemic-Tolerance in Hearts From High-Fat Diet Fed Mice. Frontiers in Physiology, 2019, 10, 1274.	1.3	6
6	The role of NADPH oxidases in diabetic cardiomyopathy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 1908-1913.	1.8	60
7	Isolated perfused working hearts provide valuable additional information during phenotypic assessment of the diabetic mouse heart. PLoS ONE, 2018, 13, e0204843.	1.1	7
8	Myocardial NADPH oxidase-4 regulates the physiological response to acute exercise. ELife, 2018, 7, .	2.8	44
9	Exercise of obese mice induces cardioprotection and oxygen sparing in hearts exposed to high-fat load. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H1054-H1062.	1.5	18
10	Targeted redox inhibition of protein phosphatase 1 by Nox4 regulates <scp>elF</scp> 2αâ€mediated stress signaling. EMBO Journal, 2016, 35, 319-334.	3.5	91
11	Cardiac-targeted NADPH oxidase 4 in the adaptive cardiac remodelling of the murine heart. Lancet, The, 2015, 385, S73.	6.3	18
12	How Exercise May Amend Metabolic Disturbances in Diabetic Cardiomyopathy. Antioxidants and Redox Signaling, 2015, 22, 1587-1605.	2.5	57
13	High- and Moderate-Intensity Training Normalizes Ventricular Function and Mechanoenergetics in Mice With Diet-Induced Obesity. Diabetes, 2013, 62, 2287-2294.	0.3	79
14	Cardiac peroxisome proliferator-activated receptor-α activation causes increased fatty acid oxidation, reducing efficiency and post-ischaemic functional loss. Cardiovascular Research, 2009, 83, 519-526.	1.8	56
15	Increased O ₂ cost of basal metabolism and excitation-contraction coupling in hearts from type 2 diabetic mice. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H1373-H1379.	1.5	42
16	Glucose and insulin improve cardiac efficiency and postischemic functional recovery in perfused hearts from type 2 diabetic (db/db) mice. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E1288-E1294.	1.8	64
17	Age-Dependent Changes in Metabolism, Contractile Function, and Ischemic Sensitivity in Hearts From db/db Mice. Diabetes, 2003, 52, 434-441.	0.3	247
18	Changes in substrate metabolism in isolated mouse hearts following ischemia-reperfusion. Molecular and Cellular Biochemistry, 2003, 249, 97-103.	1.4	9