
Jan Hrcek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7521440/publications.pdf Version: 2024-02-01

IAN HOCEK

#	Article	IF	CITATIONS
1	The presence of multiple parasitoids decreases host survival under warming, but parasitoid performance also decreases. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20220121.	1.2	5
2	Environment and space drive the community assembly of Atlantic European grasslands: Insights from multiple facets. Journal of Biogeography, 2022, 49, 699-711.	1.4	9
3	Effects of phenological mismatch under warming are modified by community context. Global Change Biology, 2022, 28, 4013-4026.	4.2	8
4	Molecular analyses reveal consistent food web structure with elevation in rainforest <i>Drosophila</i> – parasitoid communities. Ecography, 2021, 44, 403-413.	2.1	19
5	Intraspecific variation in symbiont density in an insect–microbe symbiosis. Molecular Ecology, 2021, 30, 1559-1569.	2.0	23
6	Experimental warming influences species abundances in a Drosophila host community through direct effects on species performance rather than altered competition and parasitism. PLoS ONE, 2021, 16, e0245029.	1.1	7
7	Wing plasticity and associated gene expression varies across the pea aphid biotype complex. Evolution; International Journal of Organic Evolution, 2021, 75, 1143-1149.	1.1	9
8	DROP: Molecular voucher database for identification of <i>Drosophila</i> parasitoids. Molecular Ecology Resources, 2021, 21, 2437-2454.	2.2	16
9	A molecular phylogeny of the parasitoid wasp subfamily Rogadinae (Ichneumonoidea: Braconidae) with descriptions of three new genera. Systematic Entomology, 2021, 46, 1019-1044.	1.7	9
10	Metacommunity theory for transmission of heritable symbionts within insect communities. Ecology and Evolution, 2020, 10, 1703-1721.	0.8	41
11	Multiple phenotypes conferred by a single insect symbiont are independent. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200562.	1.2	19
12	Elevational contrast in predation and parasitism risk to caterpillars in a tropical rainforest. Entomologia Experimentalis Et Applicata, 2019, 167, 922-931.	0.7	14
13	The influence of symbiotic bacteria on reproductive strategies and wing polyphenism in pea aphids responding to stress. Journal of Animal Ecology, 2019, 88, 601-611.	1.3	18
14	Mechanisms structuring host–parasitoid networks in a global warming context: a review. Ecological Entomology, 2019, 44, 581-592.	1.1	47
15	A novel method to predict dark diversity using unconstrained ordination analysis. Journal of Vegetation Science, 2019, 30, 610-619.	1.1	15
16	Consequences of symbiont coâ€infections for insect host phenotypes. Journal of Animal Ecology, 2018, 87, 478-488.	1.3	47
17	Hosts do not simply outsource pathogen resistance to protective symbionts. Evolution; International Journal of Organic Evolution, 2018, 72, 1488-1499.	1.1	18
18	Genotype specificity among hosts, pathogens, and beneficial microbes influences the strength of symbiontâ€mediated protection. Evolution; International Journal of Organic Evolution, 2017, 71, 1222-1231.	1.1	67

Jan Hrcek

#	Article	IF	CITATIONS
19	Cascading effects of herbivore protective symbionts on hyperparasitoids. Ecological Entomology, 2017, 42, 601-609.	1.1	12
20	Establishment and maintenance of aphid endosymbionts after horizontal transfer is dependent on host genotype. Biology Letters, 2017, 13, 20170016.	1.0	26
21	Performance of DNA metabarcoding, standard barcoding, and morphological approach in the identification of host–parasitoid interactions. PLoS ONE, 2017, 12, e0187803.	1.1	33
22	Insect symbionts in food webs. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150325.	1.8	72
23	Symbionts modify interactions between insects and natural enemies in the field. Journal of Animal Ecology, 2016, 85, 1605-1612.	1.3	55
24	A New Genus of Rhysipoline Wasp (Hymenoptera: Braconidae) with Modified Wing Venation from Africa and Papua New Guinea, Parasitoid on Choreutidae (Lepidoptera). Annales Zoologici, 2016, 66, 173-192.	0.1	13
25	Insect herbivores drive the loss of unique chemical defense in willows. Entomologia Experimentalis Et Applicata, 2015, 156, 88-98.	0.7	13
26	The global distribution of diet breadth in insect herbivores. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 442-447.	3.3	454
27	To each its own: differential response of specialist and generalist herbivores to plant defence in willows. Journal of Animal Ecology, 2015, 84, 1123-1132.	1.3	53
28	What do molecular methods bring to host–parasitoid food webs?. Trends in Parasitology, 2015, 31, 30-35.	1.5	68
29	DNA barcoding and the taxonomy of <scp>M</scp> icrogastrinae wasps (<scp>H</scp> ymenoptera,) Tj ETQq1 1 Resources, 2013, 13, 168-176.	0.784314 2.2	ł rgBT /Over 104
30	Parasitism rate, parasitoid community composition and host specificity on exposed and semi-concealed caterpillars from a tropical rainforest. Oecologia, 2013, 173, 521-532.	0.9	50
31	Interplay of succession and seasonality reflects resource utilization in an ephemeral habitat. Acta Oecologica, 2013, 46, 17-24.	0.5	24
32	Cystomastacoides van Achterberg (Braconidae, Rogadinae): first host record and descriptions of three new species from Thailand and Papua New Guinea. Journal of Hymenoptera Research, 2013, 31, 65-78.	0.8	6
33	DNA Barcodes of Caterpillars (Lepidoptera) from Papua New Guinea. Proceedings of the Entomological Society of Washington, 2013, 115, 107-109.	0.0	20
34	Predicting tropical insect herbivore abundance from host plant traits and phylogeny. Ecology, 2012, 93, S211.	1.5	90
35	A new genus and three new species of parasitoid wasp from Papua New Guinea and redescription of <i>Trigonophatnus</i> Cameron (Hymenoptera, Braconidae, Rogadinae). Journal of Natural History, 2012, 46, 1369-1385.	0.2	12
36	Insects on Plants: Explaining the Paradox of Low Diversity within Specialist Herbivore Guilds. American Naturalist, 2012, 179, 351-362.	1.0	47

Jan Hrcek

#	Article	IF	CITATIONS
37	Utility of the DNA barcoding gene fragment for parasitic wasp phylogeny (Hymenoptera:) Tj ETQq1 1 0.784314 Resources, 2012, 12, 676-685.	gBT /Over 2.2	lock 10 Tf 50 46
38	Wolbachia and DNA Barcoding Insects: Patterns, Potential, and Problems. PLoS ONE, 2012, 7, e36514.	1.1	148
39	Molecular detection of trophic links in a complex insect host–parasitoid food web. Molecular Ecology Resources, 2011, 11, 786-794.	2.2	107
40	The last population of the Woodland Brown butterfly (Lopinga achine) in the Czech Republic: habitat use, demography and site management. Journal of Insect Conservation, 2008, 12, 549-560.	0.8	49
41	Colastomion Baker (Braconidae, Rogadinae): nine new species from Papua New Guinea reared from Crambidae. Journal of Hymenoptera Research, 0, 28, 85-121.	0.8	14