Yang-Fei Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/752143/publications.pdf Version: 2024-02-01

YANG-FELZHANG

#	Article	IF	CITATIONS
1	Thermal, Mechanical and Electrical Properties of Carbon Fiber Fabric and Graphene Reinforced Segmented Polyurethane Composites. Nanomaterials, 2021, 11, 1289.	1.9	3
2	Temperature effect on thermal, mechanical, and electrical properties of Ag nanoparticle filled thermoplastic polyurethane composites. Polymer Composites, 2021, 42, 5952-5961.	2.3	6
3	RGO-Coated Polyurethane Foam/Segmented Polyurethane Composites as Solid–Solid Phase Change Thermal Interface Material. Polymers, 2020, 12, 3004.	2.0	15
4	Thermal, electrical and mechanical properties of graphene foam filled poly(methyl methacrylate) composite prepared by in situ polymerization. Composites Part B: Engineering, 2018, 135, 201-206.	5.9	53
5	Graphene nanosheetsâ€filled epoxy composites prepared by a fast dispersion method. Journal of Applied Polymer Science, 2017, 134, 45152.	1.3	25
6	Thermal conductivities of PU composites with graphene aerogels reduced by different methods. Composites Part A: Applied Science and Manufacturing, 2017, 103, 161-167.	3.8	26
7	RGO/TPU composite with a segregated structure as thermal interface material. Composites Part A: Applied Science and Manufacturing, 2017, 101, 108-114.	3.8	54
8	Thermal Conductivity of Graphene-Polymer Composites: Mechanisms, Properties, and Applications. Polymers, 2017, 9, 437.	2.0	283
9	<i>In situ</i> fast polymerization of graphene nanosheetsâ€filled poly(methyl methacrylate) nanocomposites. Journal of Applied Polymer Science, 2016, 133, .	1.3	5
10	Microstructure and viscoelastic behaviors of graphene/PMMA nanocomposites. , 2015, , .		0
11	Fluid flow and heat transfer characteristics of liquid cooling microchannels in LTCC multilayered packaging substrate. International Journal of Heat and Mass Transfer, 2015, 84, 339-345.	2.5	44
12	Simulation on heat transfer of microchannels and thermal vias for high power electronic packages. , 2014, , .		6
13	Improvement of Ni–Cr–Mo coating performance by laser cladding combined re-melting. Applied Surface Science, 2014, 308, 285-292.	3.1	34
14	Simulation on heat transfer of microchannels and thermal vias for high power electronic packages. , 2014, , .		0
15	Microstructures, mechanical properties and corrosion resistance of Hastelloy C22 coating produced by laser cladding. Journal of Alloys and Compounds, 2013, 553, 253-258.	2.8	82
16	Influence of different linkage groups in biphenyl mesogenic core on phase behaviors of mesogenâ€jacketed liquid crystalline polymers. Journal of Polymer Science Part A, 2013, 51, 2545-2554.	2.5	2
17	Viscoelastic properties of nanosilicaâ€filled epoxy composites investigated by dynamic nanoindentation. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 1030-1038.	2.4	34
18	Microstructure and mechanical properties of an alumina–glass low temperature co-fired ceramic. Journal of the European Ceramic Society, 2009, 29, 1077-1082.	2.8	30

#	Article	IF	CITATIONS
19	Nanoscale mechanical properties and microstructure of 3D LTCC substrate. , 2009, , .		2
20	Microchannel water cooling for LTCC based microsystems. , 2009, , .		2
21	Study on the viscoelastic properties of the epoxy surface by means of nanodynamic mechanical analysis. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 281-288.	2.4	18
22	The Effect of Cavities and Channels on the Strength of LTCC Substrate. , 2007, , .		0