Marta Stucchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7521307/publications.pdf Version: 2024-02-01

Μλατλ Stucchi

#	Article	IF	CITATIONS
1	Noble Metal Promoted TiO2 from Silver-Waste Valorisation: Synergism between Ag and Au. Catalysts, 2022, 12, 235.	3.5	3
2	The Nature of Active Sites in the Pd/C-Catalyzed Hydrogenation/Hydrodeoxygenation of Benzaldehyde. Catalysts, 2022, 12, 251.	3.5	1
3	An Insight into the Role of Reactant Structure Effect in Pd/C Catalysed Aldehyde Hydrogenation. Nanomaterials, 2022, 12, 908.	4.1	4
4	Iron as modifier of Pd and Pt-based catalysts for sustainable and green processes. Inorganica Chimica Acta, 2022, 535, 120856.	2.4	5
5	New insights for the catalytic oxidation of cyclohexane to K-A oil. Journal of Energy Chemistry, 2022, 70, 45-51.	12.9	10
6	Oxidation of 5-Hydroxymethylfurfural on Supported Ag, Au, Pd and Bimetallic Pd-Au Catalysts: Effect of the Support. Catalysts, 2021, 11, 115.	3.5	20
7	Ruling Factors in Cinnamaldehyde Hydrogenation: Activity and Selectivity of Pt-Mo Catalysts. Nanomaterials, 2021, 11, 362.	4.1	5
8	Discovering the role of substrate in aldehyde hydrogenation. Journal of Catalysis, 2021, 399, 162-169.	6.2	9
9	Ru supported on micro and mesoporous carbons as catalysts for biomass-derived molecules hydrogenation. Catalysis Today, 2020, 357, 143-151.	4.4	12
10	A Pt-Mo hybrid catalyst for furfural transformation. Catalysis Today, 2020, 357, 122-131.	4.4	11
11	Catalytic Oxidation of Methoxy Substituted Benzyl Alcohols as Model for Lignin Valorisation. Catalysis Today, 2020, 357, 15-21.	4.4	10
12	Unraveling the effect of ZrO ₂ modifiers on the nature of active sites on AuRu/ZrO ₂ catalysts for furfural hydrogenation. Sustainable Energy and Fuels, 2020, 4, 1469-1480.	4.9	10
13	Glycerol Oxidation over Supported Gold Catalysts: The Combined Effect of Au Particle Size and Basicity of Support. Processes, 2020, 8, 1016.	2.8	8
14	Synergistic Effect in Au-Cu Bimetallic Catalysts for the Valorization of Lignin-Derived Compounds. Catalysts, 2020, 10, 332.	3.5	10
15	LiFePO4 spray drying scale-up and carbon-cage for improved cyclability. Journal of Power Sources, 2020, 462, 228103.	7.8	19
16	A Kinetic Study on the Degradation of Acetaminophen and Amoxicillin in Water by Ultrasound. ChemistrySelect, 2020, 5, 14986-14992.	1.5	6
17	Ultrasound to improve both synthesis and pollutants degradation based on metal nanoparticles supported on TiO2. Ultrasonics Sonochemistry, 2019, 51, 462-468	8.2	25
18	CNF-Functionalization as Versatile Tool for Tuning Activity in Cellulose-Derived Product Hydrogenation. Molecules, 2019, 24, 316.	3.8	7

Marta Stucchi

#	Article	IF	CITATIONS
19	Influence of frequency and amplitude on the mucus viscoelasticity of the novel mechano-acoustic Frequencerâ"¢. Respiratory Medicine, 2019, 153, 52-59.	2.9	5
20	Gold‣ilver Catalysts: Ruling Factors for Establishing Synergism. ChemCatChem, 2019, 11, 4043-4053.	3.7	3
21	Gold Catalysts for the Selective Oxidation of Biomassâ€Derived Products. ChemCatChem, 2019, 11, 309-323.	3.7	47
22	Water treatment: Mn-TiO2 synthesized by ultrasound with increased aromatics adsorption. Ultrasonics Sonochemistry, 2018, 44, 272-279.	8.2	29
23	Gas-Phase Fructose Conversion to Furfural in a Microfluidized Bed Reactor. ACS Sustainable Chemistry and Engineering, 2018, 6, 5580-5587.	6.7	13
24	Ultrasound assisted synthesis of Ag-decorated TiO2 active in visible light. Ultrasonics Sonochemistry, 2018, 40, 282-288.	8.2	80
25	Simultaneous photodegradation of VOC mixture by TiO2 powders. Chemosphere, 2018, 193, 198-206.	8.2	47
26	Nano-MnO2 Decoration of TiO2 Microparticles to Promote Gaseous Ethanol Visible Photoremoval. Nanomaterials, 2018, 8, 686.	4.1	22
27	Carbon-Supported Au Nanoparticles: Catalytic Activity Ruled Out by Carbon Support. Topics in Catalysis, 2018, 61, 1928-1938.	2.8	10
28	Copper NPs decorated titania: A novel synthesis by high energy US with a study of the photocatalytic activity under visible light. Ultrasonics Sonochemistry, 2016, 31, 295-301.	8.2	25
29	NO _x degradation in a continuous large-scale reactor using full-size industrial photocatalytic tiles. Catalysis Science and Technology, 2016, 6, 2261-2267.	4.1	16
30	Nano and micro-TiO ₂ for the photodegradation of ethanol: experimental data and kinetic modelling. RSC Advances, 2015, 5, 53419-53425.	3.6	37
31	The Role of the Nano/Microstructure in the Case of the Photodegradation of Two Model VOC Pollutants Using Commercial TiO ₂ . Energy and Environment Focus, 2015, 4, 226-231.	0.3	1
32	Surface decoration of commercial micro-sized TiO2 by means of high energy ultrasound: A way to enhance its photocatalytic activity under visible light. Applied Catalysis B: Environmental, 2015, 178, 124-132.	20.2	31
33	Photocatalytic degradation of dyes in water with micro-sized TiO2 as powder or coated on porcelain-grès tiles. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 280, 27-31.	3.9	46
34	A New Frontier of Photocatalysis Employing Micro-Sized TiO2: Air/Water Pollution Abatement and Self-Cleaning/ Antibacterial Applications. , 0, , .		9
35	Photocatalytic TiO2: From Airless Jet Spray Technology to Digital Inkjet Printing. , 0, , .		3
36	Mimicking Stained Glass: A Hands-On Activity for the Preparation and Characterization of Silica Films Colored with Noble Metal Ions and Nanoparticles. Journal of Chemical Education, 0, , .	2.3	2