Gioacchino Natoli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7521251/publications.pdf

Version: 2024-02-01

16411 14702 26,866 133 64 127 citations h-index g-index papers 136 136 136 38213 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Macrophage Activation and Polarization: Nomenclature and Experimental Guidelines. Immunity, 2014, 41, 14-20.	6.6	4,638
2	Trained immunity: A program of innate immune memory in health and disease. Science, 2016, 352, aaf1098.	6.0	1,809
3	Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nature Reviews Immunology, 2011, 11, 750-761.	10.6	1,757
4	Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of llºB kinase. Nature, 2000, 403, 103-108.	13.7	1,283
5	IKK-γ is an essential regulatory subunit of the lκB kinase complex. Nature, 1998, 395, 297-300.	13.7	915
6	The Histone H3 Lysine-27 Demethylase Jmjd3 Links Inflammation to Inhibition of Polycomb-Mediated Gene Silencing. Cell, 2007, 130, 1083-1094.	13.5	843
7	A Large Fraction of Extragenic RNA Pol II Transcription Sites Overlap Enhancers. PLoS Biology, 2010, 8, e1000384.	2.6	762
8	Latent Enhancers Activated by Stimulation in Differentiated Cells. Cell, 2013, 152, 157-171.	13.5	693
9	p38-dependent marking of inflammatory genes for increased NF-κB recruitment. Nature Immunology, 2002, 3, 69-75.	7.0	665
10	Macrophages and cancer: from mechanisms to therapeutic implications. Trends in Immunology, 2015, 36, 229-239.	2.9	572
11	Identification and Characterization of Enhancers Controlling the Inflammatory Gene Expression Program in Macrophages. Immunity, 2010, 32, 317-328.	6.6	567
12	The Human Toll Signaling Pathway: Divergence of Nuclear Factor κB and JNK/SAPK Activation Upstream of Tumor Necrosis Factor Receptor–associated Factor 6 (TRAF6). Journal of Experimental Medicine, 1998, 187, 2097-2101.	4.2	566
13	Transcriptional regulation via the NF-κB signaling module. Oncogene, 2006, 25, 6706-6716.	2.6	553
14	Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor \hat{P} B. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14978-14983.	3.3	551
15	Activation of SAPK/JNK by TNF Receptor 1 Through a Noncytotoxic TRAF2-Dependent Pathway. Science, 1997, 275, 200-203.	6.0	450
16	Transcript Dynamics of Proinflammatory Genes Revealed by Sequence Analysis of Subcellular RNA Fractions. Cell, 2012, 150, 279-290.	13.5	407
17	Molecular control of activation and priming in macrophages. Nature Immunology, 2016, 17, 26-33.	7.0	392
18	Jmjd3 contributes to the control of gene expression in LPS-activated macrophages. EMBO Journal, 2009, 28, 3341-3352.	3 . 5	383

#	Article	IF	Citations
19	Two Waves of Nuclear Factor κb Recruitment to Target Promoters. Journal of Experimental Medicine, 2001, 193, 1351-1360.	4.2	368
20	Endogenous Retrotransposition Activates Oncogenic Pathways in Hepatocellular Carcinoma. Cell, 2013, 153, 101-111.	13.5	352
21	Noncoding Transcription at Enhancers: General Principles and Functional Models. Annual Review of Genetics, 2012, 46, 1-19.	3.2	348
22	Memory and flexibility of cytokine gene expression as separable properties of human TH1 and TH2 lymphocytes. Nature Immunology, 2003, 4, 78-86.	7.0	328
23	Requirement for the histone deacetylase Hdac3 for the inflammatory gene expression program in macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2865-74.	3.3	327
24	Inhibition of NF-κB Activation by Arsenite through Reaction with a Critical Cysteine in the Activation Loop of IκB Kinase. Journal of Biological Chemistry, 2000, 275, 36062-36066.	1.6	326
25	Modulation of NF-κB Activity by Exchange of Dimers. Molecular Cell, 2003, 11, 1563-1574.	4.5	283
26	Degradation of Promoter-bound p65/RelA Is Essential for the Prompt Termination of the Nuclear Factor Î ^o B Response. Journal of Experimental Medicine, 2004, 200, 107-113.	4.2	241
27	Interactions of NF-ΰB with chromatin: the art of being at the right place at the right time. Nature Immunology, 2005, 6, 439-445.	7.0	239
28	Dynamic changes in histone H3 Lys 9 methylation occurring at tightly regulated inducible inflammatory genes. Genes and Development, 2002, 16, 2219-2224.	2.7	195
29	Arginine methyltransferase CARM1 is a promoter-specific regulator of NF-κB-dependent gene expression. EMBO Journal, 2005, 24, 85-96.	3.5	195
30	Coregulation of Transcription Factor Binding and Nucleosome Occupancy through DNA Features of Mammalian Enhancers. Molecular Cell, 2014, 54, 844-857.	4.5	195
31	A hyper-dynamic equilibrium between promoter-bound and nucleoplasmic dimers controls NF-lºB-dependent gene activity. EMBO Journal, 2006, 25, 798-810.	3.5	192
32	The hepatitis B virus X gene induces p53-mediated programmed cell death. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 8162-8167.	3.3	190
33	The Histone H3 Lysine 27-Specific Demethylase Jmjd3 Is Required for Neural Commitment. PLoS ONE, 2008, 3, e3034.	1.1	188
34	Maintaining Cell Identity through Global Control of Genomic Organization. Immunity, 2010, 33, 12-24.	6.6	187
35	Control of inducible gene expression links cohesin to hematopoietic progenitor self-renewal and differentiation. Nature Immunology, 2018, 19, 932-941.	7.0	175
36	Opposing macrophage polarization programs show extensive epigenomic and transcriptional cross-talk. Nature Immunology, 2017, 18, 530-540.	7.0	164

#	Article	IF	Citations
37	Chromatin Contributions to the Regulation of Innate Immunity. Annual Review of Immunology, 2014, 32, 489-511.	9.5	160
38	Noncooperative Interactions between Transcription Factors and Clustered DNA Binding Sites Enable Graded Transcriptional Responses to Environmental Inputs. Molecular Cell, 2010, 37, 418-428.	4.5	155
39	Apoptotic, non-apoptotic, and anti-apoptotic pathways of tumor necrosis factor signalling. Biochemical Pharmacology, 1998, 56, 915-920.	2.0	137
40	The genomic landscapes of inflammation. Genes and Development, 2011, 25, 101-106.	2.7	132
41	Dissection of transcriptional and <i>cis</i> â€regulatory control of differentiation in human pancreatic cancer. EMBO Journal, 2016, 35, 595-617.	3.5	127
42	Full-length and truncated versions of the hepatitis B virus (HBV) X protein (pX) transactivate the cMYC protooncogene at the transcriptional level. Biochemical and Biophysical Research Communications, 1991, 176, 985-992.	1.0	116
43	Reactive Oxygen Intermediates Mediate Angiotensin II-induced c-Jun•c-Fos Heterodimer DNA Binding Activity and Proliferative Hypertrophic Responses in Myogenic Cells. Journal of Biological Chemistry, 1995, 270, 22129-22134.	1.6	113
44	A c-Rel subdomain responsible for enhanced DNA-binding affinity and selective gene activation. Genes and Development, 2005, 19, 2138-2151.	2.7	111
45	Adaptation and memory in immune responses. Nature Immunology, 2019, 20, 783-792.	7.0	109
46	Tumor Necrosis Factor (TNF) Receptor 1 Signaling Downstream of TNF Receptor-associated Factor 2. Journal of Biological Chemistry, 1997, 272, 26079-26082.	1.6	106
47	A dual <i>cis</i> -regulatory code links IRF8 to constitutive and inducible gene expression in macrophages. Genes and Development, 2015, 29, 394-408.	2.7	106
48	Nuclear Ubiquitin Ligases, NF-κB Degradation, and the Control of Inflammation. Science Signaling, 2008, 1, pe1.	1.6	103
49	Big data in IBD: a look into the future. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 312-321.	8.2	103
50	Genome-Organizing Factors Top2 and Hmo1 Prevent Chromosome Fragility at Sites of S phase Transcription. Cell, 2009, 138, 870-884.	13.5	101
51	Epithelial memory of inflammation limits tissue damage while promoting pancreatic tumorigenesis. Science, 2021, 373, eabj0486.	6.0	99
52	Transcriptional Control of Inflammatory Responses. Cold Spring Harbor Perspectives in Biology, 2014, 6, a016261-a016261.	2.3	95
53	The H3K27 Demethylase JMJD3 Is Required for Maintenance of the Embryonic Respiratory Neuronal Network, Neonatal Breathing, and Survival. Cell Reports, 2012, 2, 1244-1258.	2.9	94
54	Nuclear Factor kB-independent Cytoprotective Pathways Originating at Tumor Necrosis Factor Receptor-associated Factor 2. Journal of Biological Chemistry, 1998, 273, 31262-31272.	1.6	93

#	Article	IF	CITATIONS
55	Control of NF-ÂB-dependent Transcriptional Responses by Chromatin Organization. Cold Spring Harbor Perspectives in Biology, 2009, 1, a000224-a000224.	2.3	89
56	Chromatin remodelling and autocrine $TNF\hat{l} \pm are$ required for optimal interleukin-6 expression in activated human neutrophils. Nature Communications, 2015, 6, 6061.	5.8	87
57	Tumor-Derived Prostaglandin E2 Promotes p50 NF-κB-Dependent Differentiation of Monocytic MDSCs. Cancer Research, 2020, 80, 2874-2888.	0.4	81
58	Transcription of Mammalian cis-Regulatory Elements Is Restrained by Actively Enforced Early Termination. Molecular Cell, 2015, 60, 460-474.	4.5	80
59	The Histone Methyltransferase Wbp7 Controls Macrophage Function through GPI Glycolipid Anchor Synthesis. Immunity, 2012, 36, 572-585.	6.6	79
60	Short-term memory of danger signals and environmental stimuli in immune cells. Nature Immunology, 2013, 14, 777-784.	7.0	77
61	Transcriptional determination and functional specificity of myeloid cells: making sense of diversity. Nature Reviews Immunology, 2017, 17, 595-607.	10.6	75
62	TET2 Regulates Mast Cell Differentiation and Proliferation through Catalytic and Non-catalytic Activities. Cell Reports, 2016, 15, 1566-1579.	2.9	73
63	NFâ€̂B and chromatin: ten years on the path from basic mechanisms to candidate drugs. Immunological Reviews, 2012, 246, 183-192.	2.8	71
64	PARP14 Controls the Nuclear Accumulation of a Subset of Type I IFN–Inducible Proteins. Journal of Immunology, 2018, 200, 2439-2454.	0.4	70
65	Defective and nondefective adenovirus vectors for expressing foreign genes in vitro and in vivo. Gene, 1991, 101, 195-202.	1.0	69
66	Trans-Activation of Epidermal Growth Factor Receptor Gene by the Hepatitis B Virus X-Gene Product. Virology, 1993, 196, 878-882.	1.1	68
67	Persistence of Anti-SARS-CoV-2 Antibodies in Non-Hospitalized COVID-19 Convalescent Health Care Workers. Journal of Clinical Medicine, 2020, 9, 3188.	1.0	68
68	Two Modes of Transcriptional Activation at Native Promoters by NF-κB p65. PLoS Biology, 2009, 7, e1000073.	2.6	68
69	Antibodies to hepatitis C virus in patients with hepatocellular carcinoma. Journal of Hepatology, 1991, 12, 60-63.	1.8	64
70	Cutting Edge: An Inactive Chromatin Configuration at the IL-10 Locus in Human Neutrophils. Journal of Immunology, 2013, 190, 1921-1925.	0.4	59
71	<i>In Vivo</i> Genetic Screens of Patient-Derived Tumors Revealed Unexpected Frailty of the Transformed Phenotype. Cancer Discovery, 2016, 6, 650-663.	7.7	59
72	Intracellular localization of full-length and truncated hepatitis C virus core protein expressed in mammalian cells. Journal of Hepatology, 1994, 20, 833-836.	1.8	58

#	Article	IF	Citations
73	A molecular network regulating the proinflammatory phenotype of human memory T lymphocytes. Nature Immunology, 2020, 21, 388-399.	7.0	56
74	Meta-analysis of diagnostic performance of serological tests for SARS-CoV-2 antibodies up to 25 April 2020 and public health implications. Eurosurveillance, 2020, 25, .	3.9	56
75	Macrophage Activation and Polarization: Nomenclature and Experimental Guidelines. Immunity, 2014, 41, 339-340.	6.6	53
76	Hepatitis B virus X gene product acts as a transactivator in vivo. Journal of Hepatology, 1994, 21, 103-109.	1.8	50
77	Tuning up inflammation: How DNA sequence and chromatin organization control the induction of inflammatory genes by NF-ΰB. FEBS Letters, 2006, 580, 2843-2849.	1.3	49
78	Massive gene amplification drives paediatric hepatocellular carcinoma caused by bile salt export pump deficiency. Nature Communications, 2014, 5, 3850.	5.8	49
79	CAGE profiling of ncRNAs in hepatocellular carcinoma reveals widespread activation of retroviral LTR promoters in virus-induced tumors. Genome Research, 2015, 25, 1812-1824.	2.4	49
80	High constitutive activity of a broad panel of housekeeping and tissue-specific <i>cis</i> regulatory elements depends on a subset of ETS proteins. Genes and Development, 2017, 31, 399-412.	2.7	48
81	MyoD prevents cyclinA/cdk2 containing E2F complexes formation in terminally differentiated myocytes. Oncogene, 1997, 14, 1171-1184.	2.6	43
82	Epigenetic regulation of neutrophil development and function. Seminars in Immunology, 2016, 28, 83-93.	2.7	39
83	Characterization of the hepatitis B virus preS/S region encoded transcriptional transactivator. Virology, 1992, 187, 663-670.	1.1	38
84	When Sirtuins and NF-κB Collide. Cell, 2009, 136, 19-21.	13.5	32
85	Specificity and Function of IRF Family Transcription Factors: Insights from Genomics. Journal of Interferon and Cytokine Research, 2016, 36, 462-469.	0.5	31
86	WDR5 inhibition halts metastasis dissemination by repressing the mesenchymal phenotype of breast cancer cells. Breast Cancer Research, 2019, 21, 123.	2.2	31
87	Lineages, cell types and functional states: a genomic view. Current Opinion in Cell Biology, 2013, 25, 759-764.	2.6	30
88	Macrophage Activation: Glancing into Diversity. Immunity, 2014, 40, 175-177.	6.6	30
89	Co-optation of Tandem DNA Repeats for the Maintenance of Mesenchymal Identity. Cell, 2018, 173, 1150-1164.e14.	13.5	30
90	<scp>FOXA</scp> 2 controls the <i>cis</i> â€regulatory networks of pancreatic cancer cells in a differentiation gradeâ€specific manner. EMBO Journal, 2019, 38, e102161.	3.5	30

#	Article	IF	Citations
91	A first exon termination checkpoint preferentially suppresses extragenic transcription. Nature Structural and Molecular Biology, 2021, 28, 337-346.	3.6	30
92	Shaping alternative NF- \hat{l}° B-dependent gene expression programs: new clues to specificity. Cell Death and Differentiation, 2006, 13, 693-696.	5.0	29
93	Dissection of acute stimulus-inducible nucleosome remodeling in mammalian cells. Genes and Development, 2019, 33, 1159-1174.	2.7	27
94	Reactive Oxygen Intermediates (ROIs) Are Involved in the Intracellular Transduction of Angiotensin II Signal in C2C12 Cells. Annals of the New York Academy of Sciences, 1995, 752, 394-405.	1.8	25
95	Transcriptional control of macrophage diversity and specialization. European Journal of Immunology, 2011, 41, 2486-2490.	1.6	25
96	Little Things that Count in Transcriptional Regulation. Cell, 2004, 118, 406-408.	13.5	20
97	Mutual epitheliumâ€macrophage dependency in liver carcinogenesis mediated by ST18. Hepatology, 2017, 65, 1708-1719.	3.6	19
98	Rapamycinâ€sensitive signals control TCR/CD28â€driven <i>lfng</i> , <i>ll4</i> and <i>Foxp3</i> transcription and promoter region methylation. European Journal of Immunology, 2011, 41, 2086-2096.	1.6	17
99	Deciphering cis -regulatory control in inflammatory cells. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120370.	1.8	17
100	Understanding Spontaneous Conversion: The Case of the Ly6C â^' Monocyte. Immunity, 2017, 46, 764-766.	6.6	16
101	Integration of transcriptional and metabolic control in macrophage activation. EMBO Reports, 2021, 22, e53251.	2.0	16
102	The gene (LGALS3BP) encoding the serum protein 90K, associated with cancer and infection by the human immunodeficiency virus, maps at 17q25. Cytogenetic and Genome Research, 1995, 69, 223-225.	0.6	15
103	Tumor cell heterogeneity and its transcriptional bases in pancreatic cancer: a tale of two cell types and their many variants. EMBO Journal, 2021, 40, e107206.	3.5	15
104	Pancreatic Cancer Cells Require the Transcription Factor MYRF to Maintain ER Homeostasis. Developmental Cell, 2020, 55, 398-412.e7.	3.1	14
105	Induction of OCT2 contributes to regulate the gene expression program in human neutrophils activated via TLR8. Cell Reports, 2021, 35, 109143.	2.9	14
106	Lower probability and shorter duration of infections after COVID-19 vaccine correlate with anti-SARS-CoV-2 circulating IgGs. PLoS ONE, 2022, 17, e0263014.	1.1	14
107	The future therapeutic potential of histone demethylases: A critical analysis. Current Opinion in Drug Discovery & Development, 2009, 12, 607-15.	1.9	14
108	H3K9 trimethylation in active chromatin restricts the usage of functional CTCF sites in SINE B2 repeats. Genes and Development, 2022, 36, 414-432.	2.7	14

#	Article	IF	Citations
109	Fish the ChIPs: a pipeline for automated genomic annotation of ChIP-Seq data. Biology Direct, 2011, 6, 51.	1.9	12
110	Two Functionally Distinct Subsets of Mast Cells Discriminated By IL-2–Independent CD25 Activities. Journal of Immunology, 2014, 193, 2196-2206.	0.4	12
111	Specialized Chromatin Patterns in the Control of Inflammatory Gene Expression. Current Topics in Microbiology and Immunology, 2010, 349, 61-72.	0.7	11
112	Functional genomics of the inflammatory response: where are we now?. Briefings in Functional Genomics, 2013, 12, 483-488.	1.3	11
113	Plastic downregulation of the transcriptional repressor BCL6 during maturation of human dendritic cells. Experimental Cell Research, 2006, 312, 1312-1322.	1.2	10
114	A shortcut for early macrophage recruitment into tumors by activated oncogenes. Genes and Development, 2017, 31, 223-225.	2.7	10
115	A birthday gift for TRADD. Nature Immunology, 2008, 9, 1015-1016.	7.0	9
116	Non-coding transcription at cis-regulatory elements: Computational and experimental approaches. Methods, 2013, 63, 66-75.	1.9	6
117	Housekeeping and tissue-specific cis-regulatory elements: Recipes for specificity and recipes for activity. Transcription, 2018, 9, 177-181.	1.7	6
118	Sustained activation of detoxification pathways promotes liver carcinogenesis in response to chronic bile acid-mediated damage. PLoS Genetics, 2018, 14, e1007380.	1.5	6
119	NFâ€₽B: no longer an island, but a piece of a continent. EMBO Reports, 2010, 11, 246-248.	2.0	5
120	RFX transcription factors control a miR-150/PDAP1 axis that restrains the proliferation of human T cells. PLoS Biology, 2022, 20, e3001538.	2.6	4
121	Transcriptional repressors as guardians of tissue macrophage identity. EMBO Journal, 2019, 38, e103271.	3.5	3
122	Expression of thec-myc protooncogene product in cells infected with the hepatitis delta virus. Hepatology, 1994, 20, 1109-1114.	3.6	2
123	Interferon regulatory factor 1 (IRF1) controls the metabolic programmes of low-grade pancreatic cancer cells. Gut, 2023, 72, 109-128.	6.1	2
124	Characterization of the hepatitis B virus transactivators: A possible direct role of the virus in the development of hepatocellular carcinoma. Journal of Surgical Oncology, 1993, 53, 34-36.	0.8	1
125	From the Beauty of Genomic Landscapes to the Strength of Transcriptional Mechanisms. Cell, 2016, 165, 18-19.	13.5	1
126	Transcription factors as drivers of distinct pancreatic ductal adenocarcinoma (PDAC) programmes: a role for HNF4A. Gut, 2021, 70, 816-817.	6.1	1

#	Article	IF	CITATIONS
127	Achieving Transcriptional Specificity in NF-κB-Dependent Inflammatory Gene Expression. , 2006, , 39-48.		0
128	Chromatin Mediated Control of Gene Expression in Innate Immunity and Inflammation. , 2010, , 2461-2466.		0
129	When antimicrobial peptides hit the wrong target: a novel link between tumour macrophages and cancer stem cells. Gut, 2015, 64, 1841-1842.	6.1	0
130	The Macrophage Epigenome and the Control of Inflammatory Gene Expression. Epigenetics and Human Health, 2014, , 383-398.	0.2	0
131	The Control of Gene Expression in Macrophages. , 2014, , 519-543.		0
132	The AP1 Transcription Factor as a Model to Study the Modulation of Intracellular Signalling Pathways by the Hepatitis B Virus Transactivator pX. , 1994, , 748-752.		0
133	Shiftworking keeps locked-down lab on track. Nature, 2020, 580, 590-590.	13.7	0