
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7521129/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly Viscoelastic Wormlike Micellar Solutions Formed by Cationic Surfactants with Long Unsaturated Tails. Langmuir, 2001, 17, 300-306.	1.6	431
2	Flame retardant mechanism of polyamide 6–clay nanocomposites. Polymer, 2004, 45, 881-891.	1.8	422
3	Rheology of Silica Dispersions in Organic Liquids:Â New Evidence for Solvation Forces Dictated by Hydrogen Bonding. Langmuir, 2000, 16, 7920-7930.	1.6	396
4	Self-Assembly of Surfactant Vesicles that Transform into Viscoelastic Wormlike Micelles upon Heating. Journal of the American Chemical Society, 2006, 128, 6669-6675.	6.6	390
5	Wormlike Micelles Formed by Synergistic Self-Assembly in Mixtures of Anionic and Cationic Surfactants. Langmuir, 2002, 18, 3797-3803.	1.6	326
6	Sugarâ€Derived Phase‣elective Molecular Gelators as Model Solidifiers for Oil Spills. Angewandte Chemie - International Edition, 2010, 49, 7695-7698.	7.2	324
7	Electrical and Rheological Percolation in Polystyrene/MWCNT Nanocomposites. Macromolecules, 2007, 40, 7400-7406.	2.2	277
8	Shear-Thickening Response of Fumed Silica Suspensions under Steady and Oscillatory Shear. Journal of Colloid and Interface Science, 1997, 185, 57-67.	5.0	273
9	Silica Hollow Spheres by Templating of Catanionic Vesicles. Langmuir, 2003, 19, 1069-1074.	1.6	263
10	Wormlike Micelles of a C22-Tailed Zwitterionic Betaine Surfactant:  From Viscoelastic Solutions to Elastic Gels. Langmuir, 2007, 23, 12849-12856.	1.6	259
11	Microstructure and Dynamics of Wormlike Micellar Solutions Formed by Mixing Cationic and Anionic Surfactants. Journal of Physical Chemistry B, 2000, 104, 11035-11044.	1.2	256
12	Microstructural Changes in SDS Micelles Induced by Hydrotropic Salt. Langmuir, 2002, 18, 2543-2548.	1.6	256
13	Kinetics of 5α-Cholestan-3β-ylN-(2-Naphthyl)carbamate/n-Alkane Organogel Formation and Its Influence on the Fibrillar Networks. Journal of the American Chemical Society, 2005, 127, 4336-4344.	6.6	251
14	Extrusionâ€Based 3D Printing of Hierarchically Porous Advanced Battery Electrodes. Advanced Materials, 2018, 30, e1705651.	11.1	241
15	Unraveling the Mechanism of Nanotube Formation by Chiral Self-Assembly of Amphiphiles. Journal of the American Chemical Society, 2011, 133, 2511-2517.	6.6	234
16	Highâ€Fluorinated Electrolytes for Li–S Batteries. Advanced Energy Materials, 2019, 9, 1803774.	10.2	227
17	A Simple Class of Photorheological Fluids:Â Surfactant Solutions with Viscosity Tunable by Light. Journal of the American Chemical Society, 2007, 129, 1553-1559.	6.6	213
18	Distinct Kinetic Pathways Generate Organogel Networks with Contrasting Fractality and Thixotropic Properties. Journal of the American Chemical Society, 2006, 128, 15341-15352.	6.6	212

#	Article	IF	CITATIONS
19	A self-assembling hydrophobically modified chitosan capable of reversible hemostatic action. Biomaterials, 2011, 32, 3351-3357.	5.7	208
20	Liposomes: Clinical Applications and Potential for Image-Guided Drug Delivery. Molecules, 2018, 23, 288.	1.7	194
21	Cloud-Point Phenomena in Wormlike Micellar Systems Containing Cationic Surfactant and Salt. Langmuir, 2002, 18, 1056-1064.	1.6	192
22	Superabsorbent Hydrogels That Are Robust and Highly Stretchable. Macromolecules, 2014, 47, 4445-4452.	2.2	181
23	Effects of aspect ratio of MWNT on the flammability properties of polymer nanocomposites. Polymer, 2007, 48, 6086-6096.	1.8	161
24	The conundrum of gel formation by molecular nanofibers, wormlike micelles, and filamentous proteins: gelation without cross-links?. Soft Matter, 2012, 8, 8539.	1.2	159
25	Viscosity Increase with Temperature in Cationic Surfactant Solutions Due to the Growth of Wormlike Micelles. Langmuir, 2005, 21, 10998-11004.	1.6	155
26	Conductivity enhancement of carbon nanotube and nanofiber-based polymer nanocomposites by melt annealing. Polymer, 2008, 49, 4846-4851.	1.8	152
27	How Do Liquid Mixtures Solubilize Insoluble Gelators? Self-Assembly Properties of Pyrenyl-Linker-Glucono Gelators in Tetrahydrofuran–Water Mixtures. Journal of the American Chemical Society, 2013, 135, 8989-8999.	6.6	149
28	Shearâ€induced microstructural changes in flocculated suspensions of fumed silica. Journal of Rheology, 1995, 39, 1311-1325.	1.3	143
29	Vesicleâ^'Biopolymer Gels:Â Networks of Surfactant Vesicles Connected by Associating Biopolymers. Langmuir, 2005, 21, 26-33.	1.6	140
30	A New Reverse Wormlike Micellar System:Â Mixtures of Bile Salt and Lecithin in Organic Liquids. Journal of the American Chemical Society, 2006, 128, 5751-5756.	6.6	140
31	G4-Quartet·M ⁺ Borate Hydrogels. Journal of the American Chemical Society, 2015, 137, 5819-5827.	6.6	140
32	Colloidal Interactions between Particles with Tethered Nonpolar Chains Dispersed in Polar Media:Â Direct Correlation between Dynamic Rheology and Interaction Parameters. Langmuir, 2000, 16, 1066-1077.	1.6	139
33	Origins of the Viscosity Peak in Wormlike Micellar Solutions. 1. Mixed Catanionic Surfactants. A Cryo-Transmission Electron Microscopy Study. Langmuir, 2009, 25, 10483-10489.	1.6	131
34	Composite Polymer Electrolytes Based on Poly(ethylene glycol) and Hydrophobic Fumed Silica:Â Dynamic Rheology and Microstructure. Chemistry of Materials, 1998, 10, 244-251.	3.2	124
35	Anionic Wormlike Micellar Fluids that Display Cloud Points:Â Rheology and Phase Behavior. Journal of Physical Chemistry B, 2005, 109, 8599-8604.	1.2	124
36	Chitosan: a soft interconnect for hierarchical assembly of nano-scale components. Soft Matter, 2007, 3, 521.	1.2	113

#	Article	IF	CITATIONS
37	Reversible Photorheological Fluids Based on Spiropyran-Doped Reverse Micelles. Journal of the American Chemical Society, 2011, 133, 8461-8463.	6.6	111
38	Insights into organogelation and its kinetics from Hansen solubility parameters. Toward a priori predictions of molecular gelation. Soft Matter, 2014, 10, 2632.	1.2	106
39	Pyrenyl-Linker-Glucono Gelators. Correlations of Gel Properties with Gelator Structures and Characterization of Solvent Effects. Langmuir, 2013, 29, 793-805.	1.6	105
40	An Effective Dispersant for Oil Spills Based on Food-Grade Amphiphiles. Langmuir, 2014, 30, 9285-9294.	1.6	101
41	Light-Responsive Threadlike Micelles as Drag Reducing Fluids with Enhanced Heat-Transfer Capabilities. Langmuir, 2011, 27, 5806-5813.	1.6	97
42	Attachment of a Hydrophobically Modified Biopolymer at the Oil–Water Interface in the Treatment of Oil Spills. ACS Applied Materials & Interfaces, 2013, 5, 3572-3580.	4.0	97
43	Contrasting Effects of Temperature on the Rheology of Normal and Reverse Wormlike Micelles. Langmuir, 2007, 23, 372-376.	1.6	95
44	Chitosan–Alginate Microcapsules Provide Gastric Protection and Intestinal Release of ICAMâ€1â€Targeting Nanocarriers, Enabling GI Targeting In Vivo. Advanced Functional Materials, 2016, 26, 3382-3393.	7.8	93
45	Effect of Colloidal Fillers on the Cross-Linking of a UV-Curable Polymer:Â Gel Point Rheology and the Winterâ^ Chambon Criterion. Macromolecules, 2001, 34, 4526-4533.	2.2	92
46	Photogelling fluids based on light-activated growth of zwitterionic wormlike micelles. Soft Matter, 2009, 5, 797-803.	1.2	91
47	Microfluidic Directed Self-Assembly of Liposomeâ^'Hydrogel Hybrid Nanoparticles. Langmuir, 2010, 26, 11581-11588.	1.6	90
48	Rheological study of crosslinking and gelation in chlorobutyl elastomer systems. Polymer, 1996, 37, 5869-5875.	1.8	87
49	Shear-Induced Phase Separation in Solutions of Wormlike Micelles. Langmuir, 2004, 20, 3564-3573.	1.6	86
50	A Facile Route for Creating "Reverse―Vesicles: Insights into "Reverse―Self-Assembly in Organic Liquids. Journal of the American Chemical Society, 2008, 130, 8813-8817.	6.6	82
51	Salt Effects on the Phase Behavior, Structure, and Rheology of Chromonic Liquid Crystals. Journal of Physical Chemistry B, 2005, 109, 19126-19133.	1.2	80
52	Nonaqueous Photorheological Fluids Based on Light-Responsive Reverse Wormlike Micelles. Langmuir, 2010, 26, 5405-5411.	1.6	80
53	A Noninvasive Thin Film Sensor for Monitoring Oxygen Tension during in Vitro Cell Culture. Analytical Chemistry, 2009, 81, 9239-9246.	3.2	78
54	Enzymatic Grafting of Peptides from Casein Hydrolysate to Chitosan. Potential for Value-Added Byproducts from Food-Processing Wastes. Journal of Agricultural and Food Chemistry, 2004, 52, 788-793.	2.4	77

#	Article	IF	CITATIONS
55	Gel Sculpture: Moldable, Loadâ€Bearing and Selfâ€Healing Nonâ€Polymeric Supramolecular Gel Derived from a Simple Organic Salt. Chemistry - A European Journal, 2012, 18, 8057-8063.	1.7	77
56	Associative polymers bearing n-alkyl hydrophobes: Rheological evidence for microgel-like behavior. Journal of Rheology, 1999, 43, 1175-1194.	1.3	76
57	Distinct Character of Surfactant Gels: A Smooth Progression from Micelles to Fibrillar Networks. Langmuir, 2009, 25, 8382-8385.	1.6	76
58	Composite polymer electrolytes using surface-modified fumed silicas: conductivity and rheology. Solid State Ionics, 1998, 111, 117-123.	1.3	75
59	A simple route to fluids with photo-switchable viscosities based on a reversible transition between vesicles and wormlike micelles. Soft Matter, 2013, 9, 5025.	1.2	75
60	"Water-in-salt―polymer electrolyte for Li-ion batteries. Energy and Environmental Science, 2020, 13, 2878-2887.	15.6	74
61	Photogelling Colloidal Dispersions Based on Light-Activated Assembly of Nanoparticles. Journal of the American Chemical Society, 2009, 131, 7135-7141.	6.6	73
62	Regulating Oxygen Levels in a Microfluidic Device. Analytical Chemistry, 2011, 83, 8821-8824.	3.2	70
63	Catalytic Propulsion and Magnetic Steering of Soft, Patchy Microcapsules: Ability to Pick-Up and Drop-Off Microscale Cargo. ACS Applied Materials & Interfaces, 2016, 8, 15676-15683.	4.0	69
64	Thermogelling Aqueous Fluids Containing Low Concentrations of Pluronic F127 and Laponite Nanoparticles. Langmuir, 2010, 26, 8015-8020.	1.6	65
65	Hybrid hydrogel sheets that undergo pre-programmed shape transformations. Soft Matter, 2014, 10, 8157-8162.	1.2	65
66	Liposome-Templated Supramolecular Assembly of Responsive Alginate Nanogels. Langmuir, 2008, 24, 4092-4096.	1.6	64
67	Light-Activated Ionic Gelation of Common Biopolymers. Langmuir, 2011, 27, 12591-12596.	1.6	64
68	Biopolymer-Connected Liposome Networks as Injectable Biomaterials Capable of Sustained Local Drug Delivery. Biomacromolecules, 2012, 13, 3388-3394.	2.6	61
69	Microfluidic synthesis of monodisperse PDMS microbeads as discrete oxygen sensors. Soft Matter, 2012, 8, 923-926.	1.2	58
70	Onion-like multilayered polymer capsules synthesized by a bioinspired inside-out technique. Nature Communications, 2017, 8, 193.	5.8	58
71	Enzyme-Triggered Folding of Hydrogels: Toward a Mimic of the Venus Flytrap. ACS Applied Materials & Interfaces, 2016, 8, 19066-19074.	4.0	56
72	Manipulating Quantum Dots to Nanometer Precision by Control of Flow. Nano Letters, 2010, 10, 2525-2530.	4.5	54

#	Article	IF	CITATIONS
73	Biofabricating Multifunctional Soft Matter with Enzymes and Stimuliâ€Responsive Materials. Advanced Functional Materials, 2012, 22, 3004-3012.	7.8	54
74	A new design for an artificial cell: polymer microcapsules with addressable inner compartments that can harbor biomolecules, colloids or microbial species. Chemical Science, 2017, 8, 6893-6903.	3.7	54
75	Surfactant Vesicles for High-Efficiency Capture and Separation of Charged Organic Solutes. Langmuir, 2007, 23, 8965-8971.	1.6	53
76	Can Simple Salts Influence Self-Assembly in Oil? Multivalent Cations as Efficient Gelators of Lecithin Organosols. Langmuir, 2010, 26, 13831-13838.	1.6	53
77	Nanoparticle-crosslinked hydrogels as a class of efficient materials for separation and ion exchange. Soft Matter, 2011, 7, 8192.	1.2	53
78	Wormlike micelles versus water-soluble polymers as rheology-modifiers: similarities and differences. Physical Chemistry Chemical Physics, 2017, 19, 24458-24466.	1.3	53
79	Gel Formation: Phase Diagrams Using Tabletop Rheology and Calorimetry. , 2006, , 241-252.		51
80	Biopolymer capsules bearing polydiacetylenic vesicles as colorimetric sensors of pH and temperature. Soft Matter, 2011, 7, 3273.	1.2	51
81	Supramolecular Synthons in Designing Low Molecular Mass Gelling Agents: <scp>L</scp> â€Amino Acid Methyl Ester Cinnamate Salts and their Antiâ€Solventâ€Induced Instant Gelation. Chemistry - an Asian Journal, 2011, 6, 1038-1047.	1.7	51
82	Photo-activated ionic gelation of alginate hydrogel: real-time rheological monitoring of the two-step crosslinking mechanism. Soft Matter, 2014, 10, 4990-5002.	1.2	50
83	Biofilm Formation by Hydrocarbon-Degrading Marine Bacteria and Its Effects on Oil Dispersion. ACS Sustainable Chemistry and Engineering, 2019, 7, 14490-14499.	3.2	49
84	Highly Efficient Capture and Long-Term Encapsulation of Dye by Catanionic Surfactant Vesicles. Langmuir, 2006, 22, 6461-6464.	1.6	48
85	Self-assembled organogels obtained by adding minute concentrations of a bile salt to AOT reverse micelles. Soft Matter, 2008, 4, 1086.	1.2	48
86	Sprayable Foams Based on an Amphiphilic Biopolymer for Control of Hemorrhage Without Compression. ACS Biomaterials Science and Engineering, 2015, 1, 440-447.	2.6	48
87	Smart Hydrogel-Based Valves Inspired by the Stomata in Plants. ACS Applied Materials & Interfaces, 2016, 8, 18430-18438.	4.0	48
88	Structural analysis of "flexible―liposome formulations: new insights into the skin-penetrating ability of soft nanostructures. Soft Matter, 2012, 8, 10226.	1.2	47
89	Synergistic Gelation of Silica Nanoparticles and a Sorbitol-Based Molecular Gelator to Yield Highly-Conductive Free-Standing Gel Electrolytes. ACS Applied Materials & Interfaces, 2013, 5, 262-267.	4.0	47
90	Mixtures of Lecithin and Bile Salt Can Form Highly Viscous Wormlike Micellar Solutions in Water. Langmuir, 2014, 30, 10221-10230.	1.6	47

#	Article	IF	CITATIONS
91	Tyrosinase-mediated grafting and crosslinking of natural phenols confers functional properties to chitosan. Biochemical Engineering Journal, 2014, 89, 21-27.	1.8	46
92	pH-Responsive Jello: Gelatin Gels Containing Fatty Acid Vesicles. Langmuir, 2009, 25, 8519-8525.	1.6	44
93	Combinatorial Library of Primaryalkylammonium Dicarboxylate Gelators: A Supramolecular Synthon Approach. Langmuir, 2009, 25, 8742-8750.	1.6	44
94	Hydrophobically-modified chitosan foam: description and hemostatic efficacy. Journal of Surgical Research, 2015, 193, 316-323.	0.8	44
95	Photoreversible Micellar Solution as a Smart Drag-Reducing Fluid for Use in District Heating/Cooling Systems. Langmuir, 2013, 29, 102-109.	1.6	43
96	Nanodiamond gels in nonpolar media: Colloidal and rheological properties. Journal of Rheology, 2014, 58, 1599-1614.	1.3	40
97	Transition from Unilamellar to Bilamellar Vesicles Induced by an Amphiphilic Biopolymer. Physical Review Letters, 2006, 96, 048102.	2.9	39
98	Reversible electroadhesion of hydrogels to animal tissues for suture-less repair of cuts or tears. Nature Communications, 2021, 12, 4419.	5.8	38
99	Thermoreversible gelation in aqueous dispersions of colloidal particles bearing grafted poly(ethylene oxide) chains. Journal of Rheology, 2001, 45, 913-927.	1.3	37
100	Polymerizable Vesicles Based on a Single-Tailed Fatty Acid Surfactant: A Simple Route to Robust Nanocontainers. Langmuir, 2009, 25, 1566-1571.	1.6	37
101	Light-induced transformation of vesicles to micelles and vesicle-gels to sols. Soft Matter, 2013, 9, 11576.	1.2	37
102	Encapsulated fusion protein confers "sense and respond―activity to chitosan–alginate capsules to manipulate bacterial quorum sensing. Biotechnology and Bioengineering, 2013, 110, 552-562.	1.7	37
103	Determination of efficacy of novel modified chitosan sponge dressing in a lethal arterial injury model in swine. Journal of Trauma, 2012, 72, 899-907.	2.3	36
104	Shedding Light on Helical Microtubules: Real-Time Observations of Microtubule Self-Assembly by Light Microscopy. Journal of the American Chemical Society, 2012, 134, 14375-14381.	6.6	36
105	Capture and Direct Amplification of DNA on Chitosan Microparticles in a Single PCR-Optimal Solution. Analytical Chemistry, 2015, 87, 11022-11029.	3.2	36
106	Enhanced Miscibility of Low-Molecular-Weight Polystyrene/Polyisoprene Blends in Supercritical CO2. Journal of Physical Chemistry B, 1999, 103, 5472-5476.	1.2	34
107	Quantitative characterization of the formation of an interpenetrating phase composite in polystyrene from the percolation of multiwalled carbon nanotubes. Nanotechnology, 2007, 18, 505705.	1.3	34
108	Persistence of Birefringence in Sheared Solutions of Wormlike Micelles. Langmuir, 2009, 25, 167-172.	1.6	34

#	Article	IF	CITATIONS
109	Efficient dispersion of crude oil by blends of food-grade surfactants: Toward greener oil-spill treatments. Marine Pollution Bulletin, 2015, 101, 92-97.	2.3	34
110	Strain-Stiffening Response in Transient Networks Formed by Reverse Wormlike Micelles. Langmuir, 2008, 24, 8405-8408.	1.6	33
111	Self-Destructing "Mothership―Capsules for Timed Release of Encapsulated Contents. Langmuir, 2013, 29, 7993-7998.	1.6	32
112	Wormlike Micelles of a Cationic Surfactant in Polar Organic Solvents: Extending Surfactant Self-Assembly to New Systems and Subzero Temperatures. Langmuir, 2019, 35, 12782-12791.	1.6	32
113	A New Approach for Creating Polymer Hydrogels with Regions of Distinct Chemical, Mechanical, and Optical Properties. Macromolecules, 2012, 45, 5712-5717.	2.2	31
114	Glucose Oxidase-Mediated Gelation: A Simple Test To Detect Glucose in Food Products. Journal of Agricultural and Food Chemistry, 2012, 60, 8963-8967.	2.4	30
115	Accessing biology's toolbox for the mesoscale biofabrication of soft matter. Soft Matter, 2013, 9, 6019.	1.2	30
116	Colloidal Properties of Nanoerythrosomes Derived from Bovine Red Blood Cells. Langmuir, 2016, 32, 171-179.	1.6	30
117	Gelation of Vesicles and Nanoparticles Using Water-Soluble Hydrophobically Modified Chitosan. Langmuir, 2013, 29, 15302-15308.	1.6	29
118	Influence of Binary Surfactant Mixtures on the Rheology of Associative Polymer Solutions. Langmuir, 2008, 24, 7797-7802.	1.6	28
119	Hydrophobically modified chitosan gauze: a novel topical hemostat. Journal of Surgical Research, 2017, 207, 45-52.	0.8	28
120	Nature-Inspired Hydrogels with Soft and Stiff Zones that Exhibit a 100-Fold Difference in Elastic Modulus. ACS Applied Materials & Interfaces, 2018, 10, 34664-34673.	4.0	28
121	Reversible gelation of cells using self-assembling hydrophobically-modified biopolymers: towards self-assembly of tissue. Biomaterials Science, 2014, 2, 1016.	2.6	26
122	Determination of efficacy of a novel alginate dressing in a lethal arterial injury model in swine. Injury, 2016, 47, 2105-2109.	0.7	26
123	A Simple Method To Improve the Clarity and Rheological Properties of Polymer/Clay Nanocomposites by Using Fractionated Clay Particles. ACS Applied Materials & Interfaces, 2009, 1, 130-135.	4.0	25
124	Thermothickening in Solutions of Telechelic Associating Polymers and Cyclodextrins. Langmuir, 2010, 26, 56-62.	1.6	24
125	Reverse self-assembly of lipid onions induced by gadolinium and calcium ions. Soft Matter, 2013, 9, 200-207.	1.2	24
126	Microfluidics: A New Approach to In-Situ "Micromanufacturing― Microfluidic Fabrication of Magnetic and Fluorescent Chains Using Chitosan Microparticles as Building Blocks (Small 17/2011). Small, 2011, 7, 2469-2469.	5.2	23

#	Article	IF	CITATIONS
127	Microfluidic generation of uniform water droplets using gas as the continuous phase. Journal of Colloid and Interface Science, 2015, 448, 275-279.	5.0	21
128	Light-Directed Self-Assembly of Robust Alginate Gels at Precise Locations in Microfluidic Channels. ACS Applied Materials & Interfaces, 2016, 8, 17529-17538.	4.0	21
129	Nanostructured Polymers Prepared Using a Self-Assembled Nanofibrillar Scaffold as a Reverse Template. Journal of Physical Chemistry B, 2009, 113, 8026-8030.	1.2	20
130	The Unusual Rheology of Wormlike Micelles in Glycerol: Comparable Timescales for Chain Reptation and Segmental Relaxation. Langmuir, 2020, 36, 6370-6377.	1.6	20
131	A New Approach to Inâ€Situ "Micromanufacturing†Microfluidic Fabrication of Magnetic and Fluorescent Chains Using Chitosan Microparticles as Building Blocks. Small, 2011, 7, 2470-2476.	5.2	19
132	Microfluidic Assembly of Janus-Like Dimer Capsules. Langmuir, 2013, 29, 13624-13629.	1.6	19
133	Programming the Shape Transformation of a Composite Hydrogel Sheet via Erasable and Rewritable Nanoparticle Patterns. ACS Applied Materials & Interfaces, 2019, 11, 42654-42660.	4.0	19
134	Single-Step Synthesis of Alginate Microgels Enveloped with a Covalent Polymeric Shell: A Simple Way to Protect Encapsulated Cells. ACS Applied Materials & Interfaces, 2021, 13, 18432-18442.	4.0	19
135	A Simple Way to Synthesize a Protective "Skin―around Any Hydrogel. ACS Applied Materials & Interfaces, 2021, 13, 37645-37654.	4.0	18
136	Reversible Vesicle Restraint in Response to Spatiotemporally Controlled Electrical Signals:  A Bridge between Electrical and Chemical Signaling Modes. Langmuir, 2007, 23, 286-291.	1.6	17
137	Responsive capsules that enable hermetic encapsulation of contents and their thermally triggered burst-release. Materials Horizons, 2019, 6, 1238-1243.	6.4	17
138	Carbon microspheres as network nodes in a novel biocompatible gel. Soft Matter, 2011, 7, 4170.	1.2	16
139	Amphiphilic Polypeptoids Serve as the Connective Glue to Transform Liposomes into Multilamellar Structures with Closely Spaced Bilayers. Langmuir, 2017, 33, 2780-2789.	1.6	16
140	Influence of polymer viscoelasticity on the residence distributions of extruders. AICHE Journal, 2006, 52, 1451-1459.	1.8	15
141	Microfluidic synthesis of macroporous polymer immunobeads. Polymer, 2012, 53, 5469-5475.	1.8	15
142	Expanding Hydrophobically Modified Chitosan Foam for Internal Surgical Hemostasis: Safety Evaluation in a Murine Model. Journal of Surgical Research, 2019, 239, 269-277.	0.8	15
143	Application of PET deprotection for orthogonal photocontrol of aqueous solution viscosity. Chemical Communications, 2010, 46, 8983.	2.2	14
144	Capturing rare cells from blood using a packed bed of custom-synthesized chitosan microparticles. Journal of Materials Chemistry B, 2013, 1, 4313.	2.9	14

#	Article	IF	CITATIONS
145	Liposomes Entrapped in Biopolymer Hydrogels Can Spontaneously Release into the External Solution. Langmuir, 2020, 36, 7268-7276.	1.6	14
146	Bioinspired Vesicle Restraint and Mobilization Using a Biopolymer Scaffold. Langmuir, 2006, 22, 2951-2955.	1.6	13
147	A new method for centrifugal separation of blood components: Creating a rigid barrier between density-stratified layers using a UV-curable thixotropic gel. Journal of Materials Chemistry, 2012, 22, 2378-2382.	6.7	13
148	Gelation of Oil upon Contact with Water: A Bioinspired Scheme for the Self-Repair of Oil Leaks from Underwater Tubes. Langmuir, 2015, 31, 5259-5264.	1.6	13
149	Microstructural characteristics of surfactant assembly into a gel-like mesophase for application as an oil spill dispersant. Journal of Colloid and Interface Science, 2018, 524, 279-288.	5.0	13
150	A shape-shifting composite hydrogel sheet with spatially patterned plasmonic nanoparticles. Journal of Materials Chemistry B, 2019, 7, 1679-1683.	2.9	13
151	Transformation of Lipid Vesicles into Micelles by Adding Nonionic Surfactants: Elucidating the Structural Pathway and the Intermediate Structures. Journal of Physical Chemistry B, 2022, 126, 2208-2216.	1.2	13
152	Making a frothy shampoo or beer. Physics Today, 2010, 63, 62-63.	0.3	12
153	Vesicle capture on patterned surfaces coated with amphiphilic biopolymers. Soft Matter, 2011, 7, 1219-1226.	1.2	12
154	Incorporating LsrK Alâ $\in 2$ quorum quenching capability in a functionalized biopolymer capsule. Biotechnology and Bioengineering, 2018, 115, 278-289.	1.7	12
155	Rapid Electroformation of Biopolymer Gels in Prescribed Shapes and Patterns: A Simpler Alternative to 3-D Printing. ACS Applied Materials & Interfaces, 2019, 11, 37103-37111.	4.0	12
156	"Killer―Microcapsules That Can Selectively Destroy Target Microparticles in Their Vicinity. ACS Applied Materials & Interfaces, 2016, 8, 29688-29695.	4.0	11
157	Assessment of surfactants for efficient droplet PCR in mineral oil using the pendant drop technique. Colloids and Surfaces B: Biointerfaces, 2015, 126, 489-495.	2.5	10
158	Cation-induced folding of alginate-bearing bilayer gels: an unusual example of spontaneous folding along the long axis. Soft Matter, 2018, 14, 2735-2743.	1.2	10
159	Hydrophobically modified chitosan biopolymer connects halloysite nanotubes at the oil-water interface as complementary pair for stabilizing oil droplets. Journal of Colloid and Interface Science, 2022, 620, 135-143.	5.0	10
160	Does the Solvent in a Dispersant Impact the Efficiency of Crude-Oil Dispersion?. Langmuir, 2019, 35, 16630-16639.	1.6	9
161	How Do Amphiphilic Biopolymers Gel Blood? An Investigation Using Optical Microscopy. Langmuir, 2020, 36, 8357-8366.	1.6	9
162	Light-Triggered Rheological Changes in a System of Cationic Wormlike Micelles Formulated with a Photoacid Generator. Langmuir, 2020, 36, 13408-13414.	1.6	9

#	Article	IF	CITATIONS
163	Foams with Enhanced Rheology for Stopping Bleeding. ACS Applied Materials & Interfaces, 2021, 13, 13958-13967.	4.0	9
164	Rheological Properties of Cartilage Glycosaminoglycans and Proteoglycans. Macromolecules, 2021, 54, 2316-2324.	2.2	8
165	Spontaneous Formation of Stable Vesicles and Vesicle Gels in Polar Organic Solvents. Langmuir, 2021, 37, 7955-7965.	1.6	8
166	Chapter 2. Wormlike Micelles: Solutions, Gels, or Both?. RSC Soft Matter, 2017, , 9-30.	0.2	8
167	Superfast-Expanding Porous Hydrogels: Pushing New Frontiers in Converting Chemical Potential into Useful Mechanical Work. ACS Applied Materials & Interfaces, 2022, 14, 13733-13742.	4.0	7
168	Surface-modified nanoerythrosomes for potential optical imaging diagnostics. Journal of Colloid and Interface Science, 2021, 582, 246-253.	5.0	6
169	How a Gel Can Protect an Egg: A Flexible Hydrogel with Embedded Starch Particles Shields Fragile Objects Against Impact. ACS Applied Materials & Interfaces, 2022, 14, 20014-20022.	4.0	6
170	Shape-Changing Tubular Hydrogels. Gels, 2018, 4, 18.	2.1	4
171	Catalyst-Loaded Capsules that Spontaneously Inflate and Violently Eject their Core. Langmuir, 2019, 35, 13718-13726.	1.6	4
172	Freestanding organogels by molecular velcro of unsaturated amphiphiles. Soft Matter, 2019, 15, 6263-6268.	1.2	4
173	Phase-Selective Gelation of the Water Phase in an Oil–Water Mixture: An Approach Based on Oil-Activated Nanoparticle Assembly in Water. Langmuir, 2021, 37, 8107-8114.	1.6	3
174	Multilayer tubes that constrict, dilate, and curl in response to stimuli. Soft Matter, 2021, 17, 4180-4190.	1.2	3
175	Cover Picture: Sugar-Derived Phase-Selective Molecular Gelators as Model Solidifiers for Oil Spills (Angew. Chem. Int. Ed. 42/2010). Angewandte Chemie - International Edition, 2010, 49, 7597-7597.	7.2	2
176	Using Microemulsion Phase Behavior as a Predictive Model for Lecithin–Tween 80 Marine Oil Dispersant Effectiveness. Langmuir, 2021, 37, 8115-8128.	1.6	2
177	Liposomal nanoprobes that combine anti-EGFR antibodies and MRI contrast agents: synthesis and in vitro characterization. RSC Advances, 2014, 4, 33756.	1.7	1
178	Clustering of Cyclodextrin-Functionalized Microbeads by an Amphiphilic Biopolymer: Real-Time Observation of Structures Resembling Blood Clots. ACS Applied Materials & Interfaces, 2017, 9, 37238-37245.	4.0	1
179	Monitoring and Controlling Oxygen Levels in Microfluidic Devices. IFMBE Proceedings, 2010, , 325-328.	0.2	1
180	Capsules as Miniature Factories: Onâ€Demand Synthesis in Prepackaged Capsules Enabled by Switching on a Catalytic Reaction. Advanced Functional Materials, 0, , 2110191.	7.8	1

#	Article	IF	CITATIONS
181	Network Formation in Mixed Surfactant Systems. Microscopy and Microanalysis, 2004, 10, 434-435.	0.2	Ο
182	Controlled placement of single photon sources for quantum integration. Proceedings of SPIE, 2010, , .	0.8	0
183	Nanometer positioning of single quantum dots by flow control. , 2010, , .		Ο
184	Selective nano-assembly of single quantum dots on a two dimensional surface. , 2011, , .		0
185	Self-Assembling Gels of a Hydrophobically Modified Biopolymer. Materials Research Society Symposia Proceedings, 2014, 1622, 69-78.	0.1	Ο
186	Capsules with Concentric Biopolymer-Nylon Shells Imaged by Cryo-FIB/SEM. Microscopy and Microanalysis, 2021, 27, 542-544.	0.2	0