Abdelmajid ainane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7521020/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Revealing the superlative electrochemical properties of o-B2N2 monolayer in Lithium/Sodium-ion batteries. Nano Energy, 2022, 96, 107066.	16.0	29
2	Janus Aluminum Oxysulfide Al2OS: A promising 2D direct semiconductor photocatalyst with strong visible light harvesting. Applied Surface Science, 2022, 589, 152997.	6.1	21
3	Structures, stabilities, optoelectronic and photocatalytic properties of Janus aluminium mono-chalcogenides Al(Ga, In)STe monolayers. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 142, 115229.	2.7	2
4	Probing the electronic, optical and transport properties of halide double perovskites Rb2InSb(Cl,Br)6 for solar cells and thermoelectric applications. Journal of Solid State Chemistry, 2022, 312, 123262.	2.9	10
5	Two-Dimensional Nanomaterials for Solar Cell Technology. Studies in Systems, Decision and Control, 2022, , 103-119.	1.0	1
6	Structural, electronic and optical properties of two-dimensional Janus transition metal oxides MXO (M=Ti, Hf and Zr; X=S and Se) for photovoltaic and opto-electronic applications. Physica B: Condensed Matter, 2021, 604, 412621.	2.7	24
7	Thermodynamics and kinetics of 2D g-GeC monolayer as an anode materials for Li/Na-ion batteries. Journal of Power Sources, 2021, 485, 229318.	7.8	60
8	Cs2InGaX6 (X=Cl, Br, or I): Emergent Inorganic Halide Double Perovskites with enhanced optoelectronic characteristics. Current Applied Physics, 2021, 21, 50-57.	2.4	48
9	Computational identification of efficient 2D Aluminium chalcogenides monolayers for optoelectronics and photocatalysts applications. Applied Surface Science, 2021, 556, 149561.	6.1	31
10	High-Specific-Capacity and High-Performing Post-Lithium-Ion Battery Anode over 2D Black Arsenic Phosphorus. ACS Applied Energy Materials, 2021, 4, 7900-7910.	5.1	19
11	Electronic, optical and thermoelectric properties of two-dimensional pentagonal SiGeC4 nanosheet for photovoltaic applications: First-principles calculations. Superlattices and Microstructures, 2021, 158, 107024.	3.1	9
12	Two-dimensional Janus Sn2SSe and SnGeS2 semiconductors as strong absorber candidates for photovoltaic solar cells: First principles computations. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 134, 114900.	2.7	20
13	The electronic, magnetic and electrical properties of Mn2FeReO6: Ab-initio calculations and Monte-Carlo simulation. Journal of Magnetism and Magnetic Materials, 2020, 495, 165833.	2.3	16
14	Electronic and optical properties of ZnO nanosheet doped and codoped with Be and/or Mg for ultraviolet optoelectronic technologies: density functional calculations. Physica Scripta, 2020, 95, 015804.	2.5	17
15	Examination of the Magnetic Properties of the Triangular Type Mixed spin-(1/2, 1) Nanowire. Journal of Superconductivity and Novel Magnetism, 2020, 33, 817-824.	1.8	8
16	High Curie temperature in halfmetallic ferromagnets (Zn, Cr, Ti)Se and (Zn, Cr, Ti)Te for spintronic devices: Ab initio and Monte Carlo treatments. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2020, 253, 114484.	3.5	12
17	Rational Design of 2D h-BAs Monolayer as Advanced Sulfur Host for High Energy Density Li–S Batteries. ACS Applied Energy Materials, 2020, 3, 7306-7317.	5.1	23
18	Recent progress of defect chemistry on 2D materials for advanced battery anodes. Chemistry - an Asian	3.3	35

ABDELMAJID AINANE

#	Article	IF	CITATIONS
19	Hydrogen storage characteristics of Li and Na decorated 2D boron phosphide. Sustainable Energy and Fuels, 2020, 4, 4538-4546.	4.9	49
20	Exploring the Possibility of βâ€Phase Arsenicâ€Phosphorus Polymorph Monolayer as Anode Materials for Sodiumâ€ion Batteries. Advanced Theory and Simulations, 2020, 3, 2000023.	2.8	14
21	Carbides-anti-perovskites Mn3(Sn, Zn)C: Potential candidates for an application in magnetic refrigeration. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 124, 114317.	2.7	7
22	Nonlinear optical characteristics of an exciton in a GaSb-capped InSb heterodot: role of size control. European Physical Journal Plus, 2020, 135, 1.	2.6	5
23	Impact of edge structures on interfacial interactions and efficient visible-light photocatalytic activity of metal–semiconductor hybrid 2D materials. Catalysis Science and Technology, 2020, 10, 3279-3289.	4.1	37
24	Ab initio study of electronic and optical properties of penta-SiC2 and -SiGeC4 monolayers for solar energy conversion. Superlattices and Microstructures, 2020, 142, 106524.	3.1	18
25	<i>Ab initio</i> study of a 2D h-BAs monolayer: a promising anode material for alkali-metal ion batteries. Physical Chemistry Chemical Physics, 2019, 21, 18328-18337.	2.8	70
26	Dynamic magneto-caloric effect of a multilayer nanographene: Dynamic quantum Monte Carlo. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 105, 139-145.	2.7	19
27	Half metallic ferromagnetic behavior in (Ga, Cr)N and (Ga, Cr, V)N compounds for spintronic technologies: Ab initio and Monte Carlo methods. Journal of Magnetism and Magnetic Materials, 2019, 477, 220-225.	2.3	18
28	Dynamic magneto-caloric effect of a C70 fullerene: Dynamic Monte Carlo. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 108, 191-196.	2.7	16
29	Hysteresis loops and dielectric properties of a mixed spin Blume–Capel Ising ferroelectric nanowire. Physica A: Statistical Mechanics and Its Applications, 2018, 506, 499-506.	2.6	32
30	Quantum Monte Carlo study of dynamic magnetic properties of nano-graphene. Journal of Magnetism and Magnetic Materials, 2018, 460, 223-228.	2.3	35
31	The magnetic properties and hysteresis behaviors of the mixed spin-(1/2,1) Ferrimagnetic nanowire. Physica B: Condensed Matter, 2018, 549, 82-86.	2.7	8
32	A Theoretical Study of Hysteresis Behaviors of 2D Mixed Spin-(1/2,1)Ising Nanopaticles. , 2018, , .		0
33	Magnetoelectronic properties of Vanadium impurities co-doped (Cd, Cr)Te compound for spintronic devices: First principles calculations and Monte Carlo simulation. Journal of Magnetism and Magnetic Materials, 2018, 466, 420-429.	2.3	13
34	Magnetoelectronic properties of GaN codoped with (V, Mn) impurities for spintronic devices: Ab-initio and Monte Carlo studies. Physica A: Statistical Mechanics and Its Applications, 2018, 512, 1249-1259.	2.6	15
35	Monte Carlo simulation of dielectric properties of a mixed spin-3/2 and spin-5/2 Ising ferrielectric nanowires. Ferroelectrics, 2017, 507, 58-68.	0.6	21
36	Reentrant phenomenon in a transverse spin-1 Ising nanoparticle with diluted magnetic sites. Journal of Magnetism and Magnetic Materials, 2017, 442, 53-61.	2.3	17

ABDELMAJID AINANE

#	Article	IF	CITATIONS
37	Some hysteresis loop features of 2D magnetic spin-1 Ising nanoparticle: shape lattice and single-ion anisotropy effects. Chinese Journal of Physics, 2017, 55, 2224-2235.	3.9	8
38	Hysteresis loop behaviors of a decorated double-walled cubic nanotube. Physica B: Condensed Matter, 2017, 524, 137-143.	2.7	7
39	Dynamic Magnetic Properties of a Mixed Spin Ising Double-Walled Ferromagnetic Nanotubes: A Dynamic Monte Carlo Study. Journal of Superconductivity and Novel Magnetism, 2017, 30, 839-844.	1.8	11
40	The Magnetic Properties of the Mixed Ferrimagnetic Ising System with Random Crystal Field. Journal of Superconductivity and Novel Magnetism, 2017, 30, 1247-1256.	1.8	7
41	Magnetic behaviors of a transverse spin-1/2 Ising cubic nanowire with core/shell structure. Physica B: Condensed Matter, 2017, 507, 51-60.	2.7	5
42	Hysteresis loops and dielectric properties of compositionally graded (Ba,Sr)TiO 3 thin films described by the transverse Ising model. Chinese Journal of Physics, 2016, 54, 533-544.	3.9	10
43	Magnetic properties of a diluted transverse spin-1 Ising nanocube with a longitudinal crystal-field. Proceedings of SPIE, 2016, , .	0.8	2
44	A theoretical study of the hysteresis behaviors of a transverse spin-1/2 Ising nanocube. Journal of Magnetism and Magnetic Materials, 2016, 413, 30-38.	2.3	10
45	Some characteristic behaviours of a spin-1/2 Ising nanoparticle. Journal of Physics: Conference Series, 2016, 758, 012023.	0.4	2
46	Magnetic properties of a diluted spin-1/2 Ising nanocube. Physica A: Statistical Mechanics and Its Applications, 2016, 443, 385-398.	2.6	19
47	Investigation of a core/shell Ising nanoparticle: Thermal and magnetic properties. Physica B: Condensed Matter, 2016, 481, 124-132.	2.7	10
48	Phase diagrams of a transverse cubic nanowire with diluted surface shell. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	6
49	Investigation of the surface shell effects on the magnetic properties of a transverse antiferromagnetic Ising nanocube. Superlattices and Microstructures, 2015, 80, 151-168.	3.1	18
50	Thermodynamic Properties of the Core/Shell Antiferromagnetic Ising Nanocube. Journal of Superconductivity and Novel Magnetism, 2015, 28, 3127-3133.	1.8	8
51	Effect of Seeding Layers on Hysteresis Loops and Phase Transition of the Ferroelectric Thin Film. Ferroelectrics, 2015, 478, 1-10.	0.6	Ο
52	The Magnetic Properties of Multi-surface Transverse Ferroelectric Ising Thin Films. Journal of Superconductivity and Novel Magnetism, 2015, 28, 877-883.	1.8	0
53	Magnetic Properties of a Transverse Ising Nanoparticle. Journal of Superconductivity and Novel Magnetism, 2015, 28, 885-890.	1.8	10
54	Magnetic properties of a single transverse Ising ferrimagnetic nanoparticle. Physica B: Condensed Matter, 2015, 456, 142-150.	2.7	17

#	ARTICLE	IF	CITATIONS
55	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si37.gif" overflow="scroll"> <mml:mrow><mml:mfrac><mml:mrow><mml:mn>3</mml:mn></mml:mrow><mml:mrow>< spin-<mml:math <br="" altimg="si38.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:mrow><mml:mfrac><mml:mrow><mml:mn>1</mml:mn></mml:mrow><mml:mrow><</mml:mrow></mml:mfrac></mml:mrow></mml:math></mml:mrow></mml:mfrac></mml:mrow>	mml:mn>2 mml:mn>2	2< 46 2<
56	Superlattices and Microstructures, 2014, 75, 761-774. Dielectric Properties and Hysteresis Loops of a Ferroelectric Nanoparticle System Described by the Transverse Ising Model. Journal of Superconductivity and Novel Magnetism, 2014, 27, 2153-2162.	1.8	9
57	The dielectric properties and the hysteresis loops of the spin-1 Ising nanowire system with the effect of a negative core/shell coupling: A Monte Carlo study. Superlattices and Microstructures, 2014, 73, 121-135.	3.1	28
58	Magnetic properties of a ferromagnetic thin film with four spin interaction: A Monte Carlo simulation study. Journal of Magnetism and Magnetic Materials, 2013, 339, 127-132.	2.3	12
59	Magnetic Properties of Diluted Magnetic Nanowire. Journal of Superconductivity and Novel Magnetism, 2013, 26, 201-211.	1.8	17
60	Phase diagrams of diluted transverse Ising nanowire. Journal of Magnetism and Magnetic Materials, 2013, 336, 75-82.	2.3	30
61	Monte Carlo Study of Long-Range Interactions of a Ferroelectric Bilayer with Antiferroelectric Interfacial Coupling. Journal of Superconductivity and Novel Magnetism, 2013, 26, 3075-3083.	1.8	6
62	Theoretical Investigations of Hysteresis Loops of Ferroelectric or Ferrielectric Nanotubes with Core/Shell Morphology. Journal of Superconductivity and Novel Magnetism, 2012, 25, 2407-2414.	1.8	27
63	Hysteresis Loops and Phase Diagrams of the Spin-1 Ising Model in a Transverse Crystal Field. Chinese Physics Letters, 2012, 29, 016101.	3.3	7
64	Pyroelectric, dielectric properties and hysteresis loops of a ferroelectric bilayer system described by the transverse Ising model with long-range interactions. Physica Scripta, 2012, 86, 045704.	2.5	15
65	Hysteresis loops and susceptibility of a transverse Ising nanowire. Journal of Magnetism and Magnetic Materials, 2012, 324, 2434-2441.	2.3	70
66	Modeling the influence of the seeding layer on the transition behavior of a ferroelectric thin film. Thin Solid Films, 2011, 520, 646-650.	1.8	2
67	The Magnetic Properties of the Spin-1 Ising System withÂtheÂEffect of the Transverse Crystal Field. Journal of Superconductivity and Novel Magnetism, 2011, 24, 571-575.	1.8	6
68	Effects of Biaxial Crystal Field on the Magnetic Properties onÂaÂSpin-1ÂlsingÂSystem. Journal of Superconductivity and Novel Magnetism, 2011, 24, 577-584.	1.8	1
69	The magnetic properties of disordered Fe–Al alloy system. Physica A: Statistical Mechanics and Its Applications, 2010, 389, 3427-3434.	2.6	11
70	The effects of surface transition layers on the phase diagrams and the pyroelectric properties of ferroelectric thin films. Physica Status Solidi (B): Basic Research, 2009, 246, 1723-1730.	1.5	5
71	The critical properties of the solid solution. Physica B: Condensed Matter, 2009, 404, 31-35.	2.7	3
72	Ferroelectric films described by the transverse Ising model. Physica B: Condensed Matter, 2009, 404, 4190-4197	2.7	6

ABDELMAJID AINANE

#	Article	IF	CITATIONS
73	Effects of Surface on the Critical Temperature of Ferroelectric Films. Ferroelectrics, 2008, 372, 22-30.	0.6	4
74	Hysteresis loops of a ferroelectric superlattice with an antiferroelectric interfacial coupling. Physica Scripta, 2007, 75, 500-505.	2.5	16
75	Dielectric properties of the Ba _{<i>x</i>} Sr _{1â^'<i>x</i>} TiO ₃ system. Physica Scripta, 2007, 76, 475-479.	2.5	1
76	Hysteresis loops of a bilayer superlattice. Physica Status Solidi (B): Basic Research, 2007, 244, 3398-3407.	1.5	11
77	Ferroelectric/antiferroelectric bilayer superlattice described by a transverse spin- Ising model. Journal of Magnetism and Magnetic Materials, 2007, 315, 132-136.	2.3	16
78	The spin-1/2 Ising film with a perfect surface. Physica Scripta, 2006, 73, 325-331.	2.5	4
79	Tricritical behavior in the diluted transverse spin-1 Ising model with a longitudinal crystal field. Journal of Magnetism and Magnetic Materials, 2005, 288, 259-266.	2.3	19
80	The Curie temperature of the ferroelectric films with long-range interactions. Physica A: Statistical Mechanics and Its Applications, 2005, 358, 150-159.	2.6	6
81	The site diluted transverse spin-1 Ising model with a longitudinal crystal-field. Physica A: Statistical Mechanics and Its Applications, 2005, 358, 184-196.	2.6	6
82	The transverse crystal-field effects of the mixed spin Ising bilayer system. Journal of Magnetism and Magnetic Materials, 2004, 269, 245-258.	2.3	55
83	The phase diagrams and the order parameters of the transverse spin-1 Ising model with a longitudinal crystal-field. Physica A: Statistical Mechanics and Its Applications, 2004, 338, 479-492.	2.6	16
84	Pyroelectric properties of ferroelectric superlattice with two alternative layers on transverse Ising model. Physica A: Statistical Mechanics and Its Applications, 2003, 329, 377-390.	2.6	8
85	The order parameters of a spin-1 Ising film in a transverse field. Journal of Physics Condensed Matter, 1999, 11, 2087-2102.	1.8	22
86	Phase diagrams of the site-diluted spin-12Ising superlattice. Physical Review B, 1999, 60, 4149-4157.	3.2	23
87	The Transverse Ferromagnet Spin–½ Ising Model of an Alternating Magnetic Superlattice. Physica Scripta, 1999, 59, 168-173.	2.5	9
88	The site-diluted spin- Ising film. Physica A: Statistical Mechanics and Its Applications, 1999, 269, 329-343.	2.6	10
89	Phase Transitions in a Spin-1/2 Ising Model of Alternating Magnetic Superlattice. Physica Status Solidi (B): Basic Research, 1998, 209, 161-171.	1.5	15