Amos Martinez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7520776/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	All-Polarization Maintaining Fiber Laser and Pulse Compressor. IEEE Photonics Technology Letters, 2018, 30, 2151-2154.	1.3	5
2	Quantum key distribution using in-line highly birefringent interferometers. Applied Physics Letters, 2018, 113, 031107.	1.5	3
3	Birefringent Interferometry for Quantum Key Distribution. , 2018, , .		Ο
4	Photonâ€Pair Generation with a 100 nm Thick Carbon Nanotube Film. Advanced Materials, 2017, 29, 1605978.	11.1	28
5	Bright-dark rogue wave in mode-locked fibre laser (Conference Presentation). , 2017, , .		1
6	Low-loss saturable absorbers based on tapered fibers embedded in carbon nanotube/polymer composites. APL Photonics, 2017, 2, .	3.0	40
7	Optical modulators with 2D layered materials. Nature Photonics, 2016, 10, 227-238.	15.6	1,188
8	Simplified all-polarization maintaining fiber laser mode-locked in the all-normal dispersion regime. , 2016, , .		0
9	Recent advances in mode-locked fibre lasers. , 2015, , .		1
10	A net normal dispersion all-fiber laser using a hybrid mode-locking mechanism. Laser Physics Letters, 2014, 11, 025101.	0.6	17
11	Nanotube Based Nonlinear Fiber Devices for Fiber Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 89-98.	1.9	10
12	Short pulse fiber lasers mode-locked by carbon nanotubes and graphene. Optical Fiber Technology, 2014, 20, 702-713.	1.4	53
13	Polarization Maintaining, Nanotube-Based Mode-Locked Lasing From Figure of Eight Fiber Laser. IEEE Photonics Technology Letters, 2014, 26, 180-182.	1.3	17
14	High-power sub-picosecond all-fiber laser source at 1.56 lm. Chinese Optics Letters, 2014, 12, 111402-111404.	1.3	3
15	High-power sub-picosecond all-fiber laser source at 1.56 lm-corrigendum. Chinese Optics Letters, 2014, 12, 123502.	1.3	1
16	Nanotube and graphene saturable absorbers for fibre lasers. Nature Photonics, 2013, 7, 842-845.	15.6	695
17	Carbon nanotube and graphene for photonic applications. Proceedings of SPIE, 2013, , .	0.8	5
18	Enhanced stability of nitrogen-sealed carbon nanotube saturable absorbers under high-intensity irradiation. Optics Express, 2013, 21, 4665.	1.7	32

Amos Martinez

#	Article	IF	CITATIONS
19	Optimization of output power in a fiber optical parametric oscillator. Optics Express, 2013, 21, 22617.	1.7	3
20	Carbon nanotube and graphene-based fiber lasers. , 2013, , 121-147e.		1
21	Carbon nanotube/polymer composite coated tapered fiber for four wave mixing based wavelength conversion. Optics Express, 2013, 21, 3651.	1.7	24
22	Stretched-Pulse Mode-locking using a Mechanically Exfoliated Graphene Saturable Absorber. , 2012, , .		0
23	10 GHz fundamental mode fiber laser using a graphene saturable absorber. Applied Physics Letters, 2012, 101, 041118.	1.5	117
24	Mechanically Exfoliated Graphene for Four-Wave-Mixing-Based Wavelength Conversion. IEEE Photonics Technology Letters, 2012, 24, 1792-1794.	1.3	60
25	Multi-solitons in a Dispersion Managed Fiber Laser using a Carbon Nanotube-Coated Taper Fiber. , 2012, , .		3
26	Generation of Dissipative Solitons and noise-like pulse from Figure of Eight Fiber Laser. , 2012, , .		0
27	Mechanical exfoliation of graphene for the passive mode-locking of fiber lasers. Applied Physics Letters, 2011, 99, .	1.5	211
28	Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes. Optics Express, 2011, 19, 6155.	1.7	194
29	Carbon Nanotube-Based Photonic Devices: Applications in Nonlinear Optics. , 2011, , .		10
30	Stability enhancement of carbon-nanotube-based mode-locked fiber laser by Nitrogen sealing. , 2011, , .		1
31	Generation of Four Wave Mixing in Graphene and Carbon Nanotubes Optically Deposited onto Fiber Ferrules. , 2011, , .		9
32	Carbon nanotube photonics. , 2010, , .		0
33	Passive mode-locked lasing by injecting a carbon nanotube-solution in the core of an optical fiber. Optics Express, 2010, 18, 11008.	1.7	38
34	Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing. Optics Express, 2010, 18, 23054.	1.7	235
35	Direct and evanescent interaction in carbon nanotube based photonic devices by using laser inscribed fiber structures. , 2009, , .		0
36	Application of carbon nanotubes for mode-locked fiber lasers and nonlinear devices. , 2009, , .		0

Amos Martinez

#	Article	IF	CITATIONS
37	Carbon nanotube-doped polymer optical fiber. Optics Letters, 2009, 34, 3077.	1.7	24
38	Fiber Laser with Enhanced Modelocking using a Carbon Nanotube-filled Micro-Slot Saturable Absorber. , 2009, , .		1
39	Fabrication of Carbon nanotube-poly-methyl-methacrylate composites for nonlinear photonic devices. Optics Express, 2008, 16, 11337.	1.7	55
40	In-fiber microchannel device filled with a carbon nanotube dispersion for passive mode-lock lasing. Optics Express, 2008, 16, 15425.	1.7	70
41	High energy all-fiber passively mode locked laser based on a Carbon nanotube-filled micro channel. , 2008, , .		0
42	Carbon nanotube-doped polymer optical fiber: Fabrication and application to passively mode-locked laser. , 2008, , .		0
43	Fabrication and characterization of Carbon Nanotube-Polymer saturable absorbers for mode-locked lasers. , 2008, , .		Ο
44	Photoinduced Modifications in Fiber Gratings Inscribed Directly by Infrared Femtosecond Irradiation. IEEE Photonics Technology Letters, 2006, 18, 2266-2268.	1.3	50
45	Plasma Assisted Femtosecond Laser Inscription in Dielectrics. AIP Conference Proceedings, 2006, , .	0.3	Ο
46	Direct inscription of Bragg gratings in coated fibers by an infrared femtosecond laser. Optics Letters, 2006, 31, 1603.	1.7	116
47	Distributed Bragg reflector fiber laser fabricated by femtosecond laser inscription. Optics Letters, 2006, 31, 1672.	1.7	78
48	Bending characteristics of fiber long-period gratings with cladding index modified by femtosecond laser. Journal of Lightwave Technology, 2006, 24, 3147-3154.	2.7	34
49	Micro-fabrication of advanced photonic devices by means of direct point-by-point femtosecond inscription in silica. , 2006, , .		4
50	Structure of fiber gratings directly written by infrared femtosecond laser. , 2006, , .		3
51	Long period grating directional bend sensor based on asymmetric index modification of cladding. Electronics Letters, 2005, 41, 59.	0.5	33
52	Vector bending sensors based on fibre Bragg gratings inscribed by infrared femtosecond laser. Electronics Letters, 2005, 41, 472.	0.5	39
53	Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser. Electronics Letters, 2005, 41, 176.	0.5	132
54	Direct Femtosecond Inscription of Fiber Bragg Gratings Materials Research Society Symposia Proceedings, 2004, 850, 72.	0.1	1

#	Article	IF	CITATIONS
55	Direct writing of fibre Bragg gratings by femtosecond laser. Electronics Letters, 2004, 40, 1170.	0.5	362