

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7520405/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Heterogeneous Degradation of Organic Pollutants by Persulfate Activated by CuO-Fe ₃ O ₄ : Mechanism, Stability, and Effects of pH and Bicarbonate lons. Environmental Science & Technology, 2015, 49, 6838-6845.	4.6	619
2	Electrochemical Induced Calcium Phosphate Precipitation: Importance of Local pH. Environmental Science & Technology, 2017, 51, 11156-11164.	4.6	184
3	Degradation of Toluene by a Selective Ferrous Ion Activated Persulfate Oxidation Process. Industrial & Engineering Chemistry Research, 2014, 53, 1033-1039.	1.8	109
4	Rapid and continuous oxidation of organic contaminants with ascorbic acid and a modified ferric/persulfate system. Chemical Engineering Journal, 2015, 270, 73-79.	6.6	92
5	Electrochemically mediated precipitation of phosphate minerals for phosphorus removal and recovery: Progress and perspective. Water Research, 2022, 209, 117891.	5.3	83
6	Interaction of calcium, phosphorus and natural organic matter in electrochemical recovery of phosphate. Water Research, 2018, 142, 10-17.	5.3	73
7	Is There a Precipitation Sequence in Municipal Wastewater Induced by Electrolysis?. Environmental Science & Technology, 2018, 52, 8399-8407.	4.6	68
8	Surfactant flushing remediation of toluene contaminated soil: Optimization with response surface methodology and surfactant recovery by selective oxidation with sulfate radicals. Separation and Purification Technology, 2013, 118, 612-619.	3.9	67
9	Fate of calcium, magnesium and inorganic carbon in electrochemical phosphorus recovery from domestic wastewater. Chemical Engineering Journal, 2019, 362, 453-459.	6.6	62
10	Calcium Carbonate Packed Electrochemical Precipitation Column: New Concept of Phosphate Removal and Recovery. Environmental Science & Technology, 2019, 53, 10774-10780.	4.6	60
11	Electrochemically mediated calcium phosphate precipitation fromÂphosphonates: Implications on phosphorus recovery from non-orthophosphate. Water Research, 2020, 169, 115206.	5.3	57
12	Selective decolorization of cationic dyes by peroxymonosulfate: non-radical mechanism and effect of chloride. RSC Advances, 2016, 6, 866-871.	1.7	55
13	Energy Efficient Phosphorus Recovery by Microbial Electrolysis Cell Induced Calcium Phosphate Precipitation. ACS Sustainable Chemistry and Engineering, 2019, 7, 8860-8867.	3.2	50
14	Electrochemical Recovery of Phosphorus from Acidic Cheese Wastewater: Feasibility, Quality of Products, and Comparison with Chemical Precipitation. ACS ES&T Water, 2021, 1, 1002-1013.	2.3	45
15	Electrochemical removal of phosphate in the presence of calcium at low current density: Precipitation or adsorption?. Water Research, 2020, 169, 115207.	5.3	44
16	Influence of Cell Configuration and Long-Term Operation on Electrochemical Phosphorus Recovery from Domestic Wastewater. ACS Sustainable Chemistry and Engineering, 2019, 7, 7362-7368.	3.2	39
17	Effects of current density, bicarbonate and humic acid on electrochemical induced calcium phosphate precipitation. Chemical Engineering Journal, 2018, 342, 350-356.	6.6	36
18	Electrochemical recovery of phosphorus from wastewater using tubular stainless-steel cathode for a scalable long-term operation. Water Research, 2021, 199, 117199.	5.3	28

Yang Lei

#	Article	IF	CITATIONS
19	Carbon Nanotubes Functionalized with Calcium Carbonate for Flow-Through Sequential Electrochemical Phosphate Recovery. ACS ES&T Water, 2022, 2, 206-215.	2.3	17
20	Nitrogen and phosphorous recycling from human urine by household electrochemical fixed bed in sparsely populated regions. Water Research, 2022, 218, 118467.	5.3	9