
Yan Gong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7520200/publications.pdf Version: 2024-02-01

VAN CONC

#	Article	IF	CITATIONS
1	Calibrating Photometric Redshift Measurements with the Multi-channel Imager (MCI) of the China Space Station Telescope (CSST). Research in Astronomy and Astrophysics, 2022, 22, 025019.	1.7	7
2	Anisotropies of cosmic optical and near-IR background from the <i>China space station telescope</i> (<i>CSST</i>). Monthly Notices of the Royal Astronomical Society, 2022, 511, 1830-1840.	4.4	6
3	Extracting photometric redshift from galaxy flux and image data using neural networks in the CSST survey. Monthly Notices of the Royal Astronomical Society, 2022, 512, 4593-4603.	4.4	8
4	Constraining Brans–Dicke Cosmology with the CSST Galaxy Clustering Spectroscopic Survey. Research in Astronomy and Astrophysics, 2022, 22, 055021.	1.7	2
5	Spectroscopic and Photometric Redshift Estimation by Neural Networks for the China Space Station Optical Survey (CSS-OS). Astrophysical Journal, 2021, 909, 53.	4.5	13
6	Self-calibrating Interloper Bias in Spectroscopic Galaxy-clustering Surveys. Astrophysical Journal, 2021, 919, 12.	4.5	4
7	Probing the cluster pressure profile with thermal Sunyaev–Zeldovich effect and weak lensing cross-correlation. Monthly Notices of the Royal Astronomical Society, 2020, 500, 1806-1816.	4.4	8
8	Cosmological Constraints from Line Intensity Mapping with Interlopers. Astrophysical Journal, 2020, 894, 152.	4.5	25
9	Cross-correlation of Far-infrared Background Anisotropies and CMB Lensing from Herschel and Planck Satellites. Astrophysical Journal, 2020, 901, 34.	4.5	8
10	Cosmology from the Chinese Space Station Optical Survey (CSS-OS). Astrophysical Journal, 2019, 883, 203.	4.5	129
11	Probing galaxy cluster and intra-cluster gas with luminous red galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 486, 4904-4916.	4.4	3
12	Searching for oscillations in the primordial power spectrum with CMB and LSS data. Physical Review D, 2019, 99, .	4.7	16
13	Testing the Axion-Conversion Hypothesis of 3.5ÂkeV Emission with Polarization. Physical Review Letters, 2017, 118, 061101.	7.8	4
14	Intensity Mapping of Hα, Hβ, , and Lines at zÂ<Â5. Astrophysical Journal, 2017, 835, 273.	4.5	37
15	AXION DECAY AND ANISOTROPY OF NEAR-IR EXTRAGALACTIC BACKGROUND LIGHT. Astrophysical Journal, 2016, 825, 104.	4.5	31
16	Consistency test on the cosmic evolution. Physical Review D, 2015, 92, .	4.7	2
17	CROSS-CORRELATION OF NEAR- AND FAR-INFRARED BACKGROUND ANISOTROPIES AS TRACED BY <i>SPITZER</i> AND <i>HERSCHEL</i> . Astrophysical Journal, 2015, 811, 125.	4.5	12
18	PROSPECTS FOR DETECTING C II EMISSION DURING THE EPOCH OF REIONIZATION. Astrophysical Journal, 2015, 806, 209.	4.5	103

Yan Gong

#	Article	IF	CITATIONS
19	Ultraviolet luminosity density of the universe during the epoch of reionization. Nature Communications, 2015, 6, 7945.	12.8	44
20	FOREGROUND CONTAMINATION IN LyÎ \pm INTENSITY MAPPING DURING THE EPOCH OF REIONIZATION. Astrophysical Journal, 2014, 785, 72.	4.5	53
21	On the origin of near-infrared extragalactic background light anisotropy. Science, 2014, 346, 732-735.	12.6	96
22	PROBING THE PRE-REIONIZATION EPOCH WITH MOLECULAR HYDROGEN INTENSITY MAPPING. Astrophysical Journal, 2013, 768, 130.	4.5	20
23	THE EXTRAGALACTIC BACKGROUND LIGHT FROM THE MEASUREMENTS OF THE ATTENUATION OF HIGH-ENERGY GAMMA-RAY SPECTRUM. Astrophysical Journal Letters, 2013, 772, L12.	8.3	8
24	INTENSITY MAPPING OF LyÎ \pm EMISSION DURING THE EPOCH OF REIONIZATION. Astrophysical Journal, 2013, 763, 132.	4.5	72
25	Near-infrared background anisotropies from diffuse intrahalo light of galaxies. Nature, 2012, 490, 514-516.	27.8	89
26	THE NEAR-INFRARED BACKGROUND INTENSITY AND ANISOTROPIES DURING THE EPOCH OF REIONIZATION. Astrophysical Journal, 2012, 756, 92.	4.5	58
27	INTENSITY MAPPING OF THE [C II] FINE STRUCTURE LINE DURING THE EPOCH OF REIONIZATION. Astrophysical Journal, 2012, 745, 49.	4.5	135
28	Molecular Gas Around the Infrared Dust Bubbles. Proceedings of the International Astronomical Union, 2012, 8, 43-43.	0.0	0
29	THE OH LINE CONTAMINATION OF 21 cm INTENSITY FLUCTUATION MEASUREMENTS FOR <i>z</i> = 1-4. Astrophysical Journal Letters, 2011, 740, L20.	8.3	24
30	PROBING REIONIZATION WITH INTENSITY MAPPING OF MOLECULAR AND FINE-STRUCTURE LINES. Astrophysical Journal Letters, 2011, 728, L46.	8.3	76
31	Couplings between holographic dark energy and dark matter. European Physical Journal C, 2010, 69, 509-519.	3.9	26
32	Features of holographic dark energy under combined cosmological constraints. European Physical Journal C, 2009, 60, 303-315.	3.9	82
33	Two-component model of dark energy. Physical Review D, 2007, 76, .	4.7	19
34	Testing photometric redshift measurements with filter definition of the Chinese Space Station Optical Survey (CSS-OS). Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	37