List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7520085/publications.pdf Version: 2024-02-01

LIANCLI

#	Article	IF	CITATIONS
1	ZnS nanostructures: From synthesis to applications. Progress in Materials Science, 2011, 56, 175-287.	16.0	1,134
2	Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nature Energy, 2019, 4, 408-415.	19.8	831
3	A Eu ³⁺ -Eu ²⁺ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells. Science, 2019, 363, 265-270.	6.0	793
4	Selfâ€5upported Nanotube Arrays of Sulfurâ€Đoped TiO ₂ Enabling Ultrastable and Robust Sodium Storage. Advanced Materials, 2016, 28, 2259-2265.	11.1	457
5	One-dimensional inorganic nanostructures: synthesis, field-emission and photodetection. Chemical Society Reviews, 2011, 40, 2986.	18.7	352
6	Singleâ€Crystalline CdS Nanobelts for Excellent Fieldâ€Emitters and Ultrahigh Quantumâ€Efficiency Photodetectors. Advanced Materials, 2010, 22, 3161-3165.	11.1	342
7	Hybrid Organic–Inorganic Perovskite Photodetectors. Small, 2017, 13, 1702107.	5.2	334
8	Exploration of Crystallization Kinetics in Quasi Two-Dimensional Perovskite and High Performance Solar Cells. Journal of the American Chemical Society, 2018, 140, 459-465.	6.6	327
9	Chemical Reduction of Intrinsic Defects in Thicker Heterojunction Planar Perovskite Solar Cells. Advanced Materials, 2017, 29, 1606774.	11.1	318
10	One-dimensional CdS nanostructures: synthesis, properties, and applications. Nanoscale, 2010, 2, 168.	2.8	317
11	Recent Developments in Oneâ€Dimensional Inorganic Nanostructures for Photodetectors. Advanced Functional Materials, 2010, 20, 4233-4248.	7.8	314
12	2D ZnIn ₂ S ₄ Nanosheet/1D TiO ₂ Nanorod Heterostructure Arrays for Improved Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 2014, 6, 17200-17207.	4.0	302
13	The Additive Coordination Effect on Hybrids Perovskite Crystallization and Highâ€Performance Solar Cell. Advanced Materials, 2016, 28, 9862-9868.	11.1	270
14	Ultrahighâ€Performance Solarâ€Blind Photodetectors Based on Individual Singleâ€crystalline In ₂ Ge ₂ O ₇ Nanobelts. Advanced Materials, 2010, 22, 5145-5149.	11.1	249
15	Emerging inâ€plane anisotropic twoâ€dimensional materials. InformaÄnÃ-Materiály, 2019, 1, 54-73.	8.5	247
16	Hydrogenation Driven Conductive Na ₂ Ti ₃ O ₇ Nanoarrays as Robust Binder-Free Anodes for Sodium-Ion Batteries. Nano Letters, 2016, 16, 4544-4551.	4.5	235
17	Selfâ€Powered Nanoscale Photodetectors. Small, 2017, 13, 1701848.	5.2	227
18	Liquid medium annealing for fabricating durable perovskite solar cells with improved reproducibility. Science, 2021, 373, 561-567.	6.0	227

#	Article	IF	CITATIONS
19	Superior Sodium Storage in Na ₂ Ti ₃ O ₇ Nanotube Arrays through Surface Engineering. Advanced Energy Materials, 2016, 6, 1502568.	10.2	219
20	Electronic and Optoelectronic Applications Based on 2D Novel Anisotropic Transition Metal Dichalcogenides. Advanced Science, 2017, 4, 1700231.	5.6	219
21	CdS Nanoscale Photodetectors. Advanced Materials, 2014, 26, 2619-2635.	11.1	210
22	A Selfâ€Powered and Stable Allâ€Perovskite Photodetector–Solar Cell Nanosystem. Advanced Functional Materials, 2016, 26, 1296-1302.	7.8	203
23	Boosting Sodium Storage in TiO ₂ Nanotube Arrays through Surface Phosphorylation. Advanced Materials, 2018, 30, 1704337.	11.1	201
24	Ultrathin MoO2 nanosheets for superior lithium storage. Nano Energy, 2015, 11, 129-135.	8.2	199
25	Gradient Energy Band Driven Highâ€Performance Selfâ€Powered Perovskite/CdS Photodetector. Advanced Materials, 2019, 31, e1806725.	11.1	194
26	Recent progress of one-dimensional ZnO nanostructured solar cells. Nano Energy, 2012, 1, 91-106.	8.2	189
27	Impacts of alkaline on the defects property and crystallization kinetics in perovskite solar cells. Nature Communications, 2019, 10, 1112.	5.8	185
28	Bismuth chalcogenide compounds Bi2×3 (X=O, S, Se): Applications in electrochemical energy storage. Nano Energy, 2017, 34, 356-366.	8.2	179
29	Ultrahighâ€Performance Selfâ€Powered Flexible Doubleâ€Twisted Fibrous Broadband Perovskite Photodetector. Advanced Materials, 2018, 30, e1706986.	11.1	177
30	Direct Electrodeposition of ZnO Nanotube Arrays in Anodic Alumina Membranes. Journal of Physical Chemistry C, 2007, 111, 7288-7291.	1.5	165
31	Strongly Coupled Bi ₂ S ₃ @CNT Hybrids for Robust Lithium Storage. Advanced Energy Materials, 2014, 4, 1400798.	10.2	159
32	Coagulated SnO ₂ Colloids for Highâ€Performance Planar Perovskite Solar Cells with Negligible Hysteresis and Improved Stability. Angewandte Chemie - International Edition, 2019, 58, 11497-11504.	7.2	159
33	Bio-inspired engineering of Bi2S3-PPy yolk-shell composite for highly durable lithium and sodium storage. Nano Energy, 2017, 33, 213-220.	8.2	155
34	Enhanced Photoelectrochemical Performance from Rationally Designed Anatase/Rutile TiO ₂ Heterostructures. ACS Applied Materials & Interfaces, 2016, 8, 12239-12245.	4.0	147
35	Nanoscale ultraviolet photodetectors based on onedimensional metal oxide nanostructures. Nano Research, 2015, 8, 382-405.	5.8	143
36	Phosphorus: An Anode of Choice for Sodium-Ion Batteries. ACS Energy Letters, 2018, 3, 1137-1144.	8.8	141

#	Article	IF	CITATIONS
37	Three-Dimensional WO ₃ Nanoplate/Bi ₂ S ₃ Nanorod Heterojunction as a Highly Efficient Photoanode for Improved Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 2017, 9, 40235-40243.	4.0	139
38	Interfacial Chemical Bondâ€Modulated Zâ€Scheme Charge Transfer for Efficient Photoelectrochemical Water Splitting. Advanced Energy Materials, 2021, 11, 2003500.	10.2	127
39	Dopingâ€Induced Amorphization, Vacancy, and Gradient Energy Band in SnS ₂ Nanosheet Arrays for Improved Photoelectrochemical Water Splitting. Angewandte Chemie - International Edition, 2019, 58, 6761-6765.	7.2	125
40	Highly Reversible and Durable Na Storage in Niobium Pentoxide through Optimizing Structure, Composition, and Nanoarchitecture. Advanced Materials, 2017, 29, 1605607.	11.1	122
41	Tungsten Trioxide Nanostructures for Photoelectrochemical Water Splitting: Material Engineering and Charge Carrier Dynamic Manipulation. Advanced Functional Materials, 2019, 29, 1809036.	7.8	122
42	Observing Defect Passivation of the Grain Boundary with 2â€Aminoterephthalic Acid for Efficient and Stable Perovskite Solar Cells. Angewandte Chemie - International Edition, 2020, 59, 4161-4167.	7.2	122
43	Highly Efficient Sodium Storage in Iron Oxide Nanotube Arrays Enabled by Builtâ€In Electric Field. Advanced Materials, 2019, 31, e1902603.	11.1	120
44	Sizeâ€Tailored ZnO Submicrometer Spheres: Bottomâ€Up Construction, Sizeâ€Related Optical Extinction, and Selective Aniline Trapping. Advanced Materials, 2011, 23, 1865-1870.	11.1	119
45	Self-Powered, Flexible, and Solution-Processable Perovskite Photodetector Based on Low-Cost Carbon Cloth. Small, 2017, 13, 1701042.	5.2	114
46	Simultaneous Manipulation of Oâ€Đoping and Metal Vacancy in Atomically Thin Zn ₁₀ 1n ₁₆ S ₃₄ Nanosheet Arrays toward Improved Photoelectrochemical Performance. Angewandte Chemie - International Edition, 2018, 57, 16882-16887.	7.2	109
47	Selfâ€ S upported 3D Array Electrodes for Sodium Microbatteries. Advanced Functional Materials, 2018, 28, 1704880.	7.8	108
48	Phaseâ€Modulated Band Alignment in CdS Nanorod/SnS _x Nanosheet Hierarchical Heterojunctions toward Efficient Water Splitting. Advanced Functional Materials, 2018, 28, 1706785.	7.8	102
49	A Thermodynamically Favored Crystal Orientation in Mixed Formamidinium/Methylammonium Perovskite for Efficient Solar Cells. Advanced Materials, 2019, 31, e1900390.	11.1	101
50	Efficient, flexible and mechanically robust perovskite solar cells on inverted nanocone plastic substrates. Nanoscale, 2016, 8, 4276-4283.	2.8	99
51	A Novel Conductive Mesoporous Layer with a Dynamic Twoâ€Step Deposition Strategy Boosts Efficiency of Perovskite Solar Cells to 20%. Advanced Materials, 2018, 30, e1801935.	11.1	99
52	Modification Engineering in SnO ₂ Electron Transport Layer toward Perovskite Solar Cells: Efficiency and Stability. Advanced Functional Materials, 2020, 30, 2004209.	7.8	98
53	Identifying the optimum thickness of electron transport layers for highly efficient perovskite planar solar cells. Journal of Materials Chemistry A, 2015, 3, 16445-16452.	5.2	91
54	Incorporation of Sulfate Anions and Sulfur Vacancies in ZnIn ₂ S ₄ Photoanode for Enhanced Photoelectrochemical Water Splitting. Advanced Energy Materials, 2021, 11, 2101181.	10.2	87

#	Article	IF	CITATIONS
55	TiO ₂ Electron Transport Bilayer for Highly Efficient Planar Perovskite Solar Cell. Small, 2017, 13, 1701535.	5.2	85
56	Ultrahighâ€Performance Flexible and Selfâ€Powered Photodetectors with Ferroelectric P(VDFâ€IrFE)/Perovskite Bulk Heterojunction. Advanced Functional Materials, 2019, 29, 1808415.	7.8	85
57	Three-Dimensional Microbatteries beyond Lithium Ion. Matter, 2020, 2, 1366-1376.	5.0	84
58	Lowâ€dimensional nanomaterial/Si heterostructureâ€based photodetectors. InformaÄnÃ-Materiály, 2019, 1, 140-163.	8.5	81
59	Non-noble bimetallic NiMoO 4 nanosheets integrated Si photoanodes for highly efficient and stable solar water splitting. Nano Energy, 2017, 34, 8-14.	8.2	78
60	Semitransparent, Flexible, and Selfâ€Powered Photodetectors Based on Ferroelectricityâ€Assisted Perovskite Nanowire Arrays. Advanced Functional Materials, 2019, 29, 1901280.	7.8	78
61	Self-supported multicomponent CPO-27 MOF nanoarrays as high-performance anode for lithium storage. Nano Energy, 2019, 57, 711-717.	8.2	78
62	PVP Treatment Induced Gradient Oxygen Doping in In ₂ S ₃ Nanosheet to Boost Solar Water Oxidation of WO ₃ Nanoarray Photoanode. Advanced Energy Materials, 2020, 10, 1903951.	10.2	78
63	Nanoimprinted Gratingâ€Embedded Perovskite Solar Cells with Improved Light Management. Advanced Functional Materials, 2019, 29, 1900830.	7.8	77
64	Bandgapâ€Graded CdS _x Se _{1–x} Nanowires for Highâ€Performance Fieldâ€Effect Transistors and Solar Cells. Advanced Materials, 2013, 25, 1109-1113.	11.1	75
65	Spontaneously Splitting Copper Nanowires into Quantum Dots on Graphdiyne for Suppressing Lithium Dendrites. Advanced Materials, 2020, 32, e2004379.	11.1	74
66	Flexible and Selfâ€Powered Lateral Photodetector Based on Inorganic Perovskite CsPbl ₃ –CsPbBr ₃ Heterojunction Nanowire Array. Advanced Functional Materials, 2020, 30, 1909771.	7.8	73
67	High-performance UV–vis photodetectors based on electrospun ZnO nanofiber-solution processed perovskite hybrid structures. Nano Research, 2017, 10, 2244-2256.	5.8	72
68	Durian-Inspired Design of Bismuth–Antimony Alloy Arrays for Robust Sodium Storage. ACS Nano, 2020, 14, 9117-9124.	7.3	71
69	High-performance Schottky solar cells using ZrS2 nanobelt networks. Energy and Environmental Science, 2011, 4, 2586.	15.6	68
70	Materials Based on Antimony and Bismuth for Sodium Storage. Chemistry - A European Journal, 2018, 24, 13719-13727.	1.7	68
71	TiO ₂ Phase Junction Electron Transport Layer Boosts Efficiency of Planar Perovskite Solar Cells. Advanced Science, 2018, 5, 1700614.	5.6	67
72	Designing a Transparent CdIn ₂ S ₄ /In ₂ S ₃ Bulkâ€Heterojunction Photoanode Integrated with a Perovskite Solar Cell for Unbiased Water Splitting. Advanced Materials, 2020, 32, e2002893.	11.1	67

#	Article	IF	CITATIONS
73	An Energetic CuS–Cu Battery System Based on CuS Nanosheet Arrays. ACS Nano, 2021, 15, 5420-5427.	7.3	66
74	Molybdenumâ€based materials for sodiumâ€ion batteries. InformaÄnÃ-Materiály, 2021, 3, 339-352.	8.5	65
75	Rooting binder-free tin nanoarrays into copper substrate via tin-copper alloying for robust energy storage. Nature Communications, 2020, 11, 1212.	5.8	64
76	Oxygen-deficient Ta2O5 nanoporous films as self-supported electrodes for lithium microbatteries. Nano Energy, 2018, 45, 407-412.	8.2	63
77	Selfâ€Powered UV–Vis–NIR Photodetector Based on Conjugatedâ€Polymer/CsPbBr ₃ Nanowire Array. Advanced Functional Materials, 2019, 29, 1906756.	7.8	63
78	Moistureâ€Triggered Selfâ€Healing Flexible Perovskite Photodetectors with Excellent Mechanical Stability. Advanced Materials, 2021, 33, e2100625.	11.1	63
79	Regulation of Breathing CuO Nanoarray Electrodes for Enhanced Electrochemical Sodium Storage. Advanced Functional Materials, 2018, 28, 1707179.	7.8	61
80	Recent Progress on Semiconductor Heterojunctionâ€Based Photoanodes for Photoelectrochemical Water Splitting. Small Science, 2022, 2, .	5.8	60
81	A Universal Strategy for Constructing Seamless Graphdiyne on Metal Oxides to Stabilize the Electrochemical Structure and Interface. Advanced Materials, 2019, 31, e1806272.	11.1	59
82	Templateâ€Free Construction of Selfâ€6upported Sb Prisms with Stable Sodium Storage. Advanced Energy Materials, 2019, 9, 1901096.	10.2	57
83	Nested Inverse Opal Perovskite toward Superior Flexible and Selfâ€Powered Photodetection Performance. Advanced Materials, 2020, 32, e1906974.	11.1	56
84	Stability enhancement of leadâ€free CsSnI ₃ perovskite photodetector with reductive ascorbic acid additive. InformaÄnÃ-Materiály, 2020, 2, 577-584.	8.5	56
85	Cathode Architectures for Rechargeable Ion Batteries: Progress and Perspectives. Advanced Materials, 2020, 32, e2000288.	11.1	55
86	In Situ Formed Gradient Bandgapâ€Tunable Perovskite for Ultrahighâ€5peed Color/Spectrumâ€5ensitive Photodetectors via Electronâ€Donor Control. Advanced Materials, 2020, 32, e1908108.	11.1	55
87	Ultrathin Amorphous Ni(OH) ₂ Nanosheets on Ultrathin <i>α</i> â€Fe ₂ O ₃ Films for Improved Photoelectrochemical Water Oxidation. Advanced Materials Interfaces, 2016, 3, 1600256.	1.9	53
88	Modulating oxygen vacancies in Sn-doped hematite film grown on silicon microwires for photoelectrochemical water oxidation. Journal of Materials Chemistry A, 2018, 6, 15593-15602.	5.2	53
89	Unraveling the Growth of Hierarchical Quasi-2D/3D Perovskite and Carrier Dynamics. Journal of Physical Chemistry Letters, 2018, 9, 1124-1132.	2.1	52
90	Coagulated SnO ₂ Colloids for Highâ€Performance Planar Perovskite Solar Cells with Negligible Hysteresis and Improved Stability. Angewandte Chemie, 2019, 131, 11621-11628.	1.6	52

#	Article	IF	CITATIONS
91	Perovskite Transparent Conducting Oxide for the Design of a Transparent, Flexible, and Self-Powered Perovskite Photodetector. ACS Applied Materials & Interfaces, 2020, 12, 16462-16468.	4.0	52
92	Progress of Leadâ€Free Halide Perovskites: From Material Synthesis to Photodetector Application. Advanced Functional Materials, 2021, 31, 2008275.	7.8	52
93	A multijunction of ZnIn2S4 nanosheet/TiO2 film/Si nanowire for significant performance enhancement of water splitting. Nano Research, 2015, 8, 3524-3534.	5.8	51
94	Graded Bandgap Perovskite with Intrinsic n–p Homojunction Expands Photon Harvesting Range and Enables All Transport Layerâ€Free Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1903347.	10.2	50
95	A Universal Strategy of Intermolecular Exchange to Stabilize αâ€FAPbI ₃ and Manage Crystal Orientation for Highâ€Performance Humidâ€Airâ€Processed Perovskite Solar Cells. Advanced Materials, 2022, 34, e2200041.	11.1	50
96	Adduct phases induced controlled crystallization for mixed-cation perovskite solar cells with efficiency over 21%. Nano Energy, 2019, 63, 103867.	8.2	48
97	2D Ruddlesden–Popper Perovskite with Ordered Phase Distribution for Highâ€Performance Selfâ€Powered Photodetectors. Advanced Materials, 2021, 33, e2101714.	11.1	48
98	Electrospinning for flexible sodium-ion batteries. Energy Storage Materials, 2022, 45, 704-719.	9.5	48
99	Interface reacted ZnFe ₂ O ₄ on α-Fe ₂ O ₃ nanoarrays for largely improved photoelectrochemical activity. RSC Advances, 2015, 5, 79440-79446.	1.7	47
100	Novel perovskite/TiO2/Si trilayer heterojunctions for high-performance self-powered ultraviolet-visible-near infrared (UV-Vis-NIR) photodetectors. Nano Research, 2018, 11, 1722-1730.	5.8	47
101	Ni/Fe Codoped In ₂ S ₃ Nanosheet Arrays Boost Photoâ€Electrochemical Performance of Planar Si Photocathodes. Advanced Energy Materials, 2019, 9, 1902135.	10.2	47
102	Intermediateâ€Adductâ€Assisted Growth of Stable CsPbI ₂ Br Inorganic Perovskite Films for Highâ€Efficiency Semitransparent Solar Cells. Advanced Materials, 2021, 33, e2006745.	11.1	47
103	Electrospun Materials for Batteries Moving Beyond Lithium-Ion Technologies. Electrochemical Energy Reviews, 2022, 5, 211-241.	13.1	44
104	Hybrid Nanostructures for Photodetectors. Advanced Optical Materials, 2017, 5, 1600468.	3.6	43
105	A Plasmaâ€Triggered Oâ~'S Bond and Pâ~'N Junction Near the Surface of a SnS ₂ Nanosheet Array to Enable Efficient Solar Water Oxidation. Angewandte Chemie - International Edition, 2019, 58, 16668-16675.	7.2	42
106	Partial Ion Exchange Derived 2D Cu–Zn–In–S Nanosheets as Sensitizers of 1D TiO ₂ Nanorods for Boosting Solar Water Splitting. ACS Applied Materials & Interfaces, 2016, 8, 26235-26243.	4.0	40
107	Dualâ€Doped Hematite Nanorod Arrays on Carbon Cloth as a Robust and Flexible Sodium Anode. Advanced Functional Materials, 2020, 30, 1910043.	7.8	39
108	Crowning Lithium Ions in Holeâ€Transport Layer toward Stable Perovskite Solar Cells. Advanced Materials, 2022, 34, e2200978.	11.1	39

#	Article	IF	CITATIONS
109	Flexible Three-Dimensional SnO ₂ Nanowire Arrays: Atomic Layer Deposition-Assisted Synthesis, Excellent Photodetectors, and Field Emitters. ACS Applied Materials & Interfaces, 2013, 5, 7845-7851.	4.0	38
110	Atomic layer deposition triggered Fe-In-S cluster and gradient energy band in ZnInS photoanode for improved oxygen evolution reaction. Nature Communications, 2021, 12, 5247.	5.8	36
111	Enhancing photoelectrochemical activity with three-dimensional p-CuO/n-ZnO junction photocathodes. Science China Materials, 2016, 59, 825-832.	3.5	35
112	Boosting Efficiency and Stability of Perovskite Solar Cells with CdS Inserted at TiO ₂ /Perovskite Interface. Advanced Materials Interfaces, 2016, 3, 1600729.	1.9	35
113	Bifunctional Ytterbium (III) Chloride Driven Lowâ€Temperature Synthesis of Stable α sPbI ₃ for Highâ€Efficiency Inorganic Perovskite Solar Cells. Small Methods, 2020, 4, 1900652.	4.6	35
114	New Insights into the Electron-Collection Efficiency Improvement of CdS-Sensitized TiO ₂ Nanorod Photoelectrodes by Interfacial Seed-Layer Mediation. ACS Applied Materials & Interfaces, 2019, 11, 8126-8137.	4.0	34
115	Theoretical Simulation and Modeling of Three-Dimensional Batteries. Cell Reports Physical Science, 2020, 1, 100078.	2.8	34
116	Atomic Sandwiched pâ€n Homojunctions. Angewandte Chemie - International Edition, 2021, 60, 3487-3492.	7.2	34
117	Stable Leadâ€Free Tin Halide Perovskite with Operational Stability >1200 h by Suppressing Tin(II) Oxidation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	34
118	Regulating the Silicon/Hematite Microwire Photoanode by the Conformal Al ₂ O ₃ Intermediate Layer for Water Splitting. ACS Applied Materials & Interfaces, 2019, 11, 5978-5988.	4.0	33
119	Highâ€Performance Flexible Selfâ€Powered Photodetector Based on Perovskite and Lowâ€Temperature Processed In ₂ S ₃ Nanoflake Film. Advanced Materials Interfaces, 2019, 6, 1801526.	1.9	33
120	Optical Design in Perovskite Solar Cells. Small Methods, 2020, 4, 1900150.	4.6	32
121	A Submicrosecond-Response Ultraviolet–Visible–Near-Infrared Broadband Photodetector Based on 2D Tellurosilicate InSiTe ₃ . ACS Nano, 2022, 16, 7745-7754.	7.3	32
122	Polarized Ferroelectric Field-Enhanced Self-Powered Perovskite Photodetector. ACS Photonics, 2018, 5, 3731-3738.	3.2	31
123	Engineering Interfacial Band Bending over ZnIn ₂ S ₄ /SnS ₂ by Interface Chemical Bond for Efficient Solarâ€Driven Photoelectrochemical Water Splitting. Advanced Energy Materials, 2022, 12, .	10.2	31
124	<scp>Selfâ€powered</scp> bifunctional perovskite photodetectors with both broadband and narrowband photoresponse. InformaÄnÃ-Materiály, 2022, 4, .	8.5	31
125	Structural Engineering of Si/TiO ₂ /P3HT Heterojunction Photodetectors for a Tunable Response Range. ACS Applied Materials & Interfaces, 2019, 11, 3241-3250.	4.0	30
126	NiCo ₂ O ₄ Nanostructures as a Promising Alternative for NiO Photocathodes in pâ€Type Dyeâ€Sensitized Solar Cells with High Efficiency. Energy Technology, 2014, 2, 517-521.	1.8	29

#	Article	IF	CITATIONS
127	Ultrastable Sodium Storage in MoO ₃ Nanotube Arrays Enabled by Surface Phosphorylation. ACS Applied Materials & Interfaces, 2019, 11, 37761-37767.	4.0	29
128	Observing Defect Passivation of the Grain Boundary with 2â€Aminoterephthalic Acid for Efficient and Stable Perovskite Solar Cells. Angewandte Chemie, 2020, 132, 4190-4196.	1.6	29
129	Realizing Stable Artificial Photon Energy Harvesting Based on Perovskite Solar Cells for Diverse Applications. Small, 2020, 16, e1906681.	5.2	29
130	Efficient perovskite solar cells based on novel three-dimensional TiO2 network architectures. Science Bulletin, 2016, 61, 778-786.	4.3	28
131	Ternary non-noble metal zinc-nickel-cobalt carbonate hydroxide cocatalysts toward highly efficient photoelectrochemical water splitting. Journal of Materials Science and Technology, 2018, 34, 899-904.	5.6	28
132	Efficient p-type dye-sensitized solar cells with all-nano-electrodes: NiCo2S4 mesoporous nanosheet counter electrodes directly converted from NiCo2O4 photocathodes. Nanoscale Research Letters, 2014, 9, 608.	3.1	27
133	Nanostructured solar cells harvesting multi-type energies. Energy and Environmental Science, 2012, 5, 6040.	15.6	26
134	Efficient planar perovskite solar cells based on low-cost spin-coated ultrathin Nb2O5 films. Solar Energy, 2018, 166, 187-194.	2.9	26
135	Freestanding nanosheets of 1T-2H hybrid MoS2 as electrodes for efficient sodium storage. Journal of Materials Science and Technology, 2021, 67, 237-242.	5.6	26
136	Twoâ€Dimentional Nanostructured Metal Oxide/Sulfide–Based Photoanode for Photoelectrochemical Water Splitting. Solar Rrl, 2021, 5, 2000412.	3.1	24
137	Designing WO ₃ /CdIn ₂ S ₄ type-II heterojunction with both efficient light absorption and charge separation for enhanced photoelectrochemical water splitting. Nanotechnology, 2019, 30, 495402.	1.3	23
138	Dopingâ€Induced Amorphization, Vacancy, and Gradient Energy Band in SnS ₂ Nanosheet Arrays for Improved Photoelectrochemical Water Splitting. Angewandte Chemie, 2019, 131, 6833-6837.	1.6	23
139	Ethylamine Iodide Additive Enables Solidâ€ŧo‧olid Transformed Highly Oriented Perovskite for Excellent Photodetectors. Advanced Materials, 2022, 34, e2108569.	11.1	23
140	Stable one dimensional (1D)/three dimensional (3D) perovskite solar cell with an efficiency exceeding 23%. InformaÄnÃ-Materiály, 2022, 4, .	8.5	23
141	Interface Engineering through Atomic Layer Deposition towards Highly Improved Performance of Dye-Sensitized Solar Cells. Scientific Reports, 2015, 5, 12765.	1.6	22
142	Photon management for efficient hybrid perovskite solar cells via synergetic localized grating and enhanced fluorescence effect. Nano Energy, 2017, 40, 540-549.	8.2	22
143	Materials based on group IVA elements for alloying-type sodium storage. Science China Chemistry, 2018, 61, 1494-1502.	4.2	22
144	Laserâ€Manufactured Metastable Supranano SnO <i>_x</i> for Efficient Electron/Ion Bridging in SnO ₂ â€Graphene Heterostructure Boosting Lithium Storage. Advanced Functional Materials, 2021, 31, 2101059.	7.8	22

#	Article	IF	CITATIONS
145	A high-activity bimetallic OER cocatalyst for efficient photoelectrochemical water splitting of BiVO ₄ . Nanoscale, 2020, 12, 8875-8882.	2.8	21
146	Application of materials based on group VB elements in sodium-ion batteries: A review. Journal of Materials Science and Technology, 2018, 34, 1969-1976.	5.6	20
147	High-yield synthesis of single-crystalline zinc oxide nanobelts and their applications in novel Schottky solar cells. Chemical Communications, 2011, 47, 8247.	2.2	19
148	Simultaneous Manipulation of Oâ€Đoping and Metal Vacancy in Atomically Thin Zn ₁₀ In ₁₆ S ₃₄ Nanosheet Arrays toward Improved Photoelectrochemical Performance. Angewandte Chemie, 2018, 130, 17124-17129.	1.6	19
149	Generic Approach to Boost the Sensitivity of Metal Oxide Sensors by Decoupling the Surface Charge Exchange and Resistance Reading Process. ACS Applied Materials & Interfaces, 2020, 12, 37295-37304.	4.0	19
150	Graded energy band engineering for efficient perovskite solar cells. Nano Select, 2020, 1, 152-168.	1.9	19
151	2D Siliconâ€Based Semiconductor Si ₂ Te ₃ toward Broadband Photodetection. Small, 2021, 17, e2006496.	5.2	19
152	Polypyrrole Serving as Multifunctional Surface Modifier for Photoanode Enables Efficient Photoelectrochemical Water Oxidation. Small, 2022, 18, e2105240.	5.2	19
153	Advances in the Application of Atomic Layer Deposition for Organometal Halide Perovskite Solar Cells. Advanced Materials Interfaces, 2016, 3, 1600505.	1.9	18
154	Hierarchical Porous Sb Films on 3D Cu Substrate Have Promise for Stable Sodium Storage. ACS Applied Energy Materials, 2018, 1, 3598-3602.	2.5	18
155	Synergistic bonding stabilized interface for perovskite solar cells with over 24% efficiency. Nano Energy, 2022, 100, 107518.	8.2	18
156	Nature-inspired Cu2O@CoO tree-like architecture for robust storage of sodium. Journal of Materials Science and Technology, 2020, 53, 126-131.	5.6	16
157	Multiâ€Metal Nanocluster Assisted Cuâ€Ga‧n Triâ€Doping for Enhanced Photoelectrochemical Water Splitting of BiVO ₄ Film. Advanced Materials Interfaces, 2020, 7, 2000016.	1.9	16
158	Structurally Durable Bimetallic Alloy Anodes Enabled by Compositional Gradients. Advanced Science, 2022, 9, e2201209.	5.6	16
159	Chemical Modification toward Long Spin Lifetimes in Organic Conjugated Radicals. ChemPhysChem, 2018, 19, 2972-2977.	1.0	15
160	Structure and Band Alignment Engineering of CdS/TiO ₂ /Bi ₂ WO ₆ Trilayer Nanoflake Array for Efficient Photoelectrochemical Water Splitting. ChemElectroChem, 2019, 6, 5248-5254.	1.7	15
161	Ion Sputtering–Assisted Double‣ide Interfacial Engineering for CdIn ₂ S ₄ Photoanode toward Improved Photoelectrochemical Water Splitting. Advanced Materials Interfaces, 2020, 7, 1901947.	1.9	15
162	Embedding of Ti ₃ C ₂ T <i>_x</i> Nanocrystals in MAPbI ₃ Microwires for Improved Responsivity and Detectivity of Photodetector. Small, 2021, 17, e2101954.	5.2	14

#	Article	IF	CITATIONS
163	Thiamine additive engineering enables improved film formation towards high efficiency and moisture stability in perovskite solar cells. Science China Materials, 2022, 65, 321-327.	3.5	14
164	Metal Halide Perovskite Nano/Microwires. Small Structures, 2022, 3, 2100165.	6.9	14
165	Synergistic effect of atomic layer deposition-assisted cocatalyst and crystal facet engineering in SnS2 nanosheet for solar water oxidation. Science Bulletin, 2022, 67, 1562-1571.	4.3	14
166	Two-dimensional heterojunction SnS2/SnO2 photoanode with excellent photoresponse up to near infrared region. Solar Energy Materials and Solar Cells, 2020, 207, 110342.	3.0	13
167	Understanding the Role of Topotactic Anion Exchange in the Robust Cu Ion Storage of CuS _{1–<i>x</i>} Se _{<i>x</i>} . ACS Energy Letters, 2022, 7, 1835-1841.	8.8	13
168	A general approach towards carbon nanotube and iron oxide coaxial architecture and its lithium storage capability. Journal of Power Sources, 2015, 298, 138-143.	4.0	12
169	Pbl ₂ /CH ₃ NH ₃ Cl Mixed Precursor–Induced Micrometerâ€Scale Grain Perovskite Film and Roomâ€Temperature Film Encapsulation toward High Efficiency and Stability of Planar Perovskite Solar Cells. Advanced Materials Interfaces, 2018, 5, 1800499.	1.9	12
170	In Situ Assembly of Ordered Hierarchical CuO Microhemisphere Nanowire Arrays for Highâ€Performance Bifunctional Sensing Applications. Small Methods, 2021, 5, e2100202.	4.6	12
171	A Plasmaâ€Triggered Oâ^'S Bond and Pâ^'N Junction Near the Surface of a SnS 2 Nanosheet Array to Enable Efficient Solar Water Oxidation. Angewandte Chemie, 2019, 131, 16821-16828.	1.6	11
172	Loading Amorphous NiMoO _{4–<i>x</i>} S _{<i>x</i>} Nanosheet Cocatalyst to Improve Performance of <i>p</i> -Silicon Wafer Photocathode. ACS Applied Energy Materials, 2018, 1, 1286-1293.	2.5	9
173	Rooting Zn into metallic Na bulk for energetic metal anode. Science China Materials, 2022, 65, 1789-1796.	3.5	9
174	Ternary nickel cobaltite nanostructures for energy conversion. Functional Materials Letters, 2015, 08, 1530002.	0.7	8
175	Electrochemically Anodized V ₂ O ₅ as an Efficient Sodium Cathode. Energy & Fuels, 2021, 35, 8358-8364.	2.5	8
176	Degradation mechanism and stability improvement of formamidine-based perovskite solar cells under high humidity conditions. Nano Research, 2022, 15, 8955-8961.	5.8	8
177	Partially sulfurized MoO 2 film for durable lithium storage. Materials Research Bulletin, 2017, 96, 360-364.	2.7	7
178	Boosting PEC performance of Si photoelectrodes by coupling bifunctional CuCo hybrid oxide cocatalysts. Nanotechnology, 2018, 29, 425703.	1.3	6
179	Ordered array structures for efficient perovskite solar cells. Engineering Reports, 2020, 2, e12319.	0.9	6
180	Interfacial Passivation and Energy Level Alignment Regulation for Selfâ€Powered Perovskite Photodetectors with Enhanced Performance and Stability. Advanced Materials Interfaces, 2022, 9, 2101766.	1.9	6

#	Article	IF	CITATIONS
181	Atomic Sandwiched pâ€n Homojunctions. Angewandte Chemie, 2021, 133, 3529-3534.	1.6	5
182	Architecting core-shell nanosheets of MoS2-polypyrrole on carbon cloth as a robust sodium anode. Sustainable Materials and Technologies, 2021, 28, e00255.	1.7	5
183	Designing PEDOT-modified V6O13 nanosheet arrays for sodium storage. Functional Materials Letters, 0, , 2143001.	0.7	4
184	Wrapping BiVO4 with chlorophyll for greatly improved photoelectrochemical performance and stability. Science China Materials, 2022, 65, 1512-1521.	3.5	3
185	Stable Leadâ€Free Tin Halide Perovskite with Operational Stability >1200 h by Suppressing Tin(II) Oxidation. Angewandte Chemie, 2022, 134, .	1.6	2
186	Applications of Atomic Layer Deposition in Energy Devices. , 2017, , .		0
187	Heterostructure engineering of molybdenum chalcogenides for stable sodium storage. Materials Technology, 2018, 33, 543-547.	1.5	0
188	Boosting Sodium Storage of Titanium Oxide through Homojunction Design. Batteries and Supercaps, 0,	2.4	0