Kazuo Tanaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/752008/publications.pdf

Version: 2024-02-01

271 papers

10,323 citations

53 h-index 49773 87 g-index

291 all docs

291 docs citations

times ranked

291

7015 citing authors

#	Article	IF	CITATIONS
1	Advanced functional materials based on polyhedral oligomeric silsesquioxane (POSS). Journal of Materials Chemistry, 2012, 22, 1733-1746.	6.7	440
2	New Polymeric Materials Based on Element-Blocks. Bulletin of the Chemical Society of Japan, 2015, 88, 633-643.	2.0	311
3	Solidâ€State Emission of the Anthraceneâ€ <i>o</i> à€Carborane Dyad from the Twistedâ€Intramolecular Charge Transfer in the Crystalline State. Angewandte Chemie - International Edition, 2017, 56, 254-259.	7.2	307
4	Functionalization of Boron Diiminates with Unique Optical Properties: Multicolor Tuning of Crystallization-Induced Emission and Introduction into the Main Chain of Conjugated Polymers. Journal of the American Chemical Society, 2014, 136, 18131-18139.	6.6	297
5	DNA Logic Gates. Journal of the American Chemical Society, 2004, 126, 9458-9463.	6.6	229
6	Degradation of DNA by bisulfite treatment. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 1912-1915.	1.0	209
7	Advanced Luminescent Materials Based on Organoboron Polymers. Macromolecular Rapid Communications, 2012, 33, 1235-1255.	2.0	208
8	Mechanofluorochromic Materials Based on Aggregationâ€Induced Emissionâ€Active Boron Ketoiminates: Regulation of the Direction of the Emission Color Changes. Chemistry - A European Journal, 2015, 21, 7231-7237.	1.7	189
9	Highly Emissive Boron Ketoiminate Derivatives as a New Class of Aggregationâ€Induced Emission Fluorophores. Chemistry - A European Journal, 2013, 19, 4506-4512.	1.7	183
10	Recent Progress in the Development of Solidâ€State Luminescent <i>o</i> àâ€Carboranes with Stimuli Responsivity. Angewandte Chemie - International Edition, 2020, 59, 9841-9855.	7.2	166
11	POSS Ionic Liquid. Journal of the American Chemical Society, 2010, 132, 17649-17651.	6.6	155
12	Recent progress of optical functional nanomaterials based on organoboron complexes with \hat{l}^2 -diketonate, ketoiminate and diiminate. NPG Asia Materials, 2015, 7, e223-e223.	3.8	155
13	Boron Diiminate with Aggregationâ€Induced Emission and Crystallizationâ€Induced Emissionâ€Enhancement Characteristics. Chemistry - A European Journal, 2014, 20, 8320-8324.	1.7	147
14	Structure–property relationship of octaâ€substituted POSS in thermal and mechanical reinforcements of conventional polymers. Journal of Polymer Science Part A, 2009, 47, 5690-5697.	2.5	128
15	Development of Solid-State Emissive Materials Based on Multifunctional <i>>o</i> -Carborane–Pyrene Dyads. Organic Letters, 2016, 18, 4064-4067.	2.4	127
16	Design of Base-Discriminating Fluorescent Nucleoside and Its Application to T/C SNP Typing. Journal of the American Chemical Society, 2003, 125, 9296-9297.	6.6	126
17	Recent progress in the development of advanced element-block materials. Polymer Journal, 2018, 50, 109-126.	1.3	121
18	Control of aggregation-induced emission versus fluorescence aggregation-caused quenching by bond existence at a single site in boron pyridinoiminate complexes. Materials Chemistry Frontiers, 2017 , 1 , $1573-1579$.	3.2	113

#	Article	IF	CITATIONS
19	PRODAN-Conjugated DNA:Â Synthesis and Photochemical Properties. Journal of the American Chemical Society, 2007, 129, 4776-4784.	6.6	99
20	Highly-efficient solid-state emissions of anthracene–o-carborane dyads with various substituents and their thermochromic luminescence properties. Journal of Materials Chemistry C, 2017, 5, 10047-10054.	2.7	96
21	Public-key system using DNA as a one-way function for key distribution. BioSystems, 2005, 81, 25-29.	0.9	91
22	Direct Labeling of 5-Methylcytosine and Its Applications. Journal of the American Chemical Society, 2007, 129, 5612-5620.	6.6	88
23	Conjugated Polymers Based on Tautomeric Units: Regulation of Main-Chain Conjugation and Expression of Aggregation Induced Emission Property via Boron-Complexation. Macromolecules, 2014, 47, 2268-2278.	2.2	87
24	A Highly Efficient Nearâ€Infraredâ€Emissive Copolymer with a N=N Doubleâ€Bond Ï€â€Conjugated System Based on a Fused Azobenzene–Boron Complex. Angewandte Chemie - International Edition, 2018, 57, 6546-6551.	7.2	87
25	Environment-responsive upconversion based on dendrimer-supported efficient triplet–triplet annihilation in aqueous media. Chemical Communications, 2010, 46, 4378.	2.2	86
26	A Flexible, Fused, Azomethine–Boron Complex: Thermochromic Luminescence and Thermosalient Behavior in Structural Transitions between Crystalline Polymorphs. Chemistry - A European Journal, 2017, 23, 11827-11833.	1.7	86
27	Concept of Excitation-Driven Boron Complexes and Their Applications for Functional Luminescent Materials. Bulletin of the Chemical Society of Japan, 2019, 92, 7-18.	2.0	85
28	Water-Soluble Anionic POSS-Core Dendrimer:  Synthesis and Copper(II) Complexes in Aqueous Solution. Langmuir, 2007, 23, 9057-9063.	1.6	81
29	Ï€-Conjugated Polymers Composed of BODIPY or Aza-BODIPY Derivatives Exhibiting High Electron Mobility and Low Threshold Voltage in Electron-Only Devices. Macromolecules, 2014, 47, 2316-2323.	2.2	81
30	Creative Synthesis of Organic–Inorganic Molecular Hybrid Materials. Bulletin of the Chemical Society of Japan, 2017, 90, 463-474.	2.0	81
31	Rational Design of a DNA Wire Possessing an Extremely High Hole Transport Ability. Journal of the American Chemical Society, 2003, 125, 5066-5071.	6.6	80
32	An Osmiumâ^'DNA Interstrand Complex:  Application to Facile DNA Methylation Analysis. Journal of the American Chemical Society, 2007, 129, 14511-14517.	6.6	79
33	Enhancement of entrapping ability of dendrimers by a cubic silsesquioxane core. Organic and Biomolecular Chemistry, 2008, 6, 3899.	1.5	79
34	Photostimulated Hole Transport through a DNA Duplex Immobilized on a Gold Electrode. Journal of the American Chemical Society, 2004, 126, 14732-14733.	6.6	75
35	Modulation of sensitivity to mechanical stimulus in mechanofluorochromic properties by altering substituent positions in solid-state emissive diiodo boron diiminates. Journal of Materials Chemistry C, 2016, 4, 5314-5319.	2.7	73
36	Solidâ€State Emission of the Anthracene―o â€Carborane Dyad from the Twistedâ€Intramolecular Charge Transfer in the Crystalline State. Angewandte Chemie, 2017, 129, 260-265.	1.6	71

3

#	Article	IF	CITATIONS
37	Efficient simultaneous emission from RGB-emitting organoboron dyes incorporated into organicâ \in inorganic hybrids and preparation of white light-emitting materials. Journal of Materials Chemistry C, 2013, 1, 4437.	2.7	70
38	Tuning of Properties of POSS-Condensed Water-Soluble Network Polymers by Modulating the Cross-Linking Ratio between POSS. Macromolecules, 2009, 42, 3489-3492.	2.2	69
39	Facile Modulation of Optical Properties of Diketonate-Containing Polymers by Regulating Complexation Ratios with Boron. Macromolecules, 2013, 46, 2969-2975.	2.2	68
40	Enantioselective Synthesis of Triple Helicenes by Cross-Cyclotrimerization of a Helicenyl Aryne and Alkynes via Dynamic Kinetic Resolution. Journal of the American Chemical Society, 2020, 142, 10025-10033.	6.6	67
41	Monitoring of Biological One-Electron Reduction by ¹⁹ F NMR Using Hypoxia Selective Activation of an ¹⁹ F-Labeled Indolequinone Derivative. Journal of the American Chemical Society, 2009, 131, 15982-15983.	6.6	66
42	Multi-modal 19F NMR probe using perfluorinated cubic silsesquioxane-coated silica nanoparticles for monitoring enzymatic activity. Chemical Communications, 2008, , 6176.	2.2	63
43	Film-type chemosensors based on boron diiminate polymers having oxidation-induced emission properties. Polymer Chemistry, 2015, 6, 5590-5595.	1.9	63
44	Development of solid-state emissive o-carboranes and theoretical investigation of the mechanism of the aggregation-induced emission behaviors of organoboron "element-blocks― Faraday Discussions, 2017, 196, 31-42.	1.6	63
45	Oxygen-Bridged Diphenylnaphthylamine as a Scaffold for Full-Color Circularly Polarized Luminescent Materials. Journal of Organic Chemistry, 2017, 82, 5242-5249.	1.7	60
46	Modulation of luminescence chromic behaviors and environment-responsive intensity changes by substituents in bis- <i>>o</i> -carborane-substituted conjugated molecules. Materials Chemistry Frontiers, 2018, 2, 573-579.	3.2	60
47	Unique properties of amphiphilic POSS and their applications. Polymer Journal, 2013, 45, 247-254.	1.3	59
48	Chemicals-Inspired Biomaterials: Developing Biomaterials Inspired by Material Science Based on POSS. Bulletin of the Chemical Society of Japan, 2013, 86, 1231-1239.	2.0	58
49	Effective Light-Harvesting Antennae Based on BODIPY-Tethered Cardo Polyfluorenes via Rapid Energy Transferring and Low Concentration Quenching. Macromolecules, 2013, 46, 2599-2605.	2.2	57
50	Boronâ€Ketoiminateâ€Based Polymers: Fineâ€Tuning of the Emission Color and Expression of Strong Emission Both in the Solution and Film States. Macromolecular Rapid Communications, 2014, 35, 1315-1319.	2.0	57
51	Preparation for Highly Sensitive MRI Contrast Agents Using Core/Shell Type Nanoparticles Consisting of Multiple SPIO Cores with Thin Silica Coating. Langmuir, 2010, 26, 11759-11762.	1.6	56
52	Cytosine Detection by a Fluorescein-Labeled Probe Containing Base-Discriminating Fluorescent Nucleobase. ChemBioChem, 2004, 5, 958-963.	1.3	55
53	Sideâ€chain effect of octaâ€substituted POSS fillers on refraction in polymer composites. Journal of Polymer Science Part A, 2010, 48, 5712-5717.	2.5	55
54	Solidâ€State Thermochromic Luminescence through Twisted Intramolecular Charge Transfer and Excimer Formation of a Carboraneâ^Pyrene Dyad with an Ethynyl Spacer. Asian Journal of Organic Chemistry, 2017, 6, 1818-1822.	1.3	55

#	Article	IF	Citations
55	Luminescence Color Tuning from Blue to Near Infrared of Stable Luminescent Solid Materials Based on Bisâ€ <i>o</i> àê€Carboraneâ€Substituted Oligoacenes. Chemistry - an Asian Journal, 2017, 12, 2134-2138.	1.7	54
56	Heatâ€Resistant Mechanoluminescent Chromism of the Hybrid Molecule Based on Boron Ketoiminate Modified Octasubstituted Polyhedral Oligomeric Silsesquioxane. Chemistry - A European Journal, 2017, 23, 1409-1414.	1.7	54
57	Synthesis and characterization of heterofluorenes containing four-coordinated group 13 elements: theoretical and experimental analyses and comparison of structures, optical properties and electronic states. Dalton Transactions, 2015, 44, 8697-8707.	1.6	53
58	Thermodynamic study of POSS-based ionic liquids with various numbers of ion pairs. Polymer Journal, 2011, 43, 708-713.	1.3	51
59	Bimodal Quantitative Monitoring for Enzymatic Activity with Simultaneous Signal Increases in ¹⁹ F NMR and Fluorescence Using Silica Nanoparticle-Based Molecular Probes. Bioconjugate Chemistry, 2011, 22, 1484-1490.	1.8	50
60	Synthesis of sulfonic acid-containing POSS and its filler effects for enhancing thermal stabilities and lowering melting temperatures of ionic liquids. Journal of Materials Chemistry A, 2014, 2, 624-630.	5.2	50
61	Design of bond-cleavage-induced intramolecular charge transfer emission with dibenzoboroles and their application to ratiometric sensors for discriminating chain lengths of alkanes. Materials Chemistry Frontiers, 2017, 1, 2368-2375.	3.2	50
62	Highly nearâ€infrared emissive boron di(iso)indometheneâ€based polymer: Drastic change from deepâ€red to nearâ€infrared emission via quantitative polymer reaction. Journal of Polymer Science Part A, 2013, 51, 1726-1733.	2.5	49
63	Synthetic Strategy for Low-Band Gap Oligomers and Homopolymers Using Characteristics of Thiophene-Fused Boron Dipyrromethene. Macromolecules, 2014, 47, 3755-3760.	2.2	49
64	Efficient light absorbers based on thiophene-fused boron dipyrromethene (BODIPY) dyes. Bioorganic and Medicinal Chemistry, 2013, 21, 2715-2719.	1.4	48
65	Reversible signal regulation system of 19F NMR by redox reactions using a metal complex as a switching module. Bioorganic and Medicinal Chemistry, 2009, 17, 3818-3823.	1.4	47
66	Spongeâ€Type Emissive Chemosensors for the Protein Detection Based on Boron Ketoiminateâ€Modifying Hydrogels with Aggregationâ€Induced Blueshift Emission Property. Macromolecular Chemistry and Physics, 2016, 217, 414-421.	1.1	47
67	Diarylamino- and Diarylboryl-Substituted Donor–Acceptor Pyrene Derivatives: Influence of Substitution Pattern on Their Photophysical Properties. Journal of Organic Chemistry, 2017, 82, 5111-5121.	1.7	47
68	Design and Luminescence Chromism of Fused Boron Complexes Having Constant Emission Efficiencies in Solution and in the Amorphous and Crystalline States. European Journal of Organic Chemistry, 2017, 2017, 5191-5196.	1.2	47
69	Spiral Eu(<scp>iii</scp>) coordination polymers with circularly polarized luminescence. Chemical Communications, 2018, 54, 10695-10697.	2.2	47
70	Enhancement of Aggregation-Induced Emission by Introducing Multiple o-Carborane Substitutions into Triphenylamine. Molecules, 2017, 22, 2009.	1.7	45
71	Chiral lanthanide lumino-glass for a circularly polarized light security device. Communications Chemistry, 2020, 3, .	2.0	45
72	Modulation of Morphology and Conductivity of Mixed-Valence Tetrathiafulvalene Nanofibers by Coexisting Organic Acid Anions. Langmuir, 2009, 25, 6929-6933.	1.6	44

#	Article	IF	Citations
73	POSS fillers for modulating the thermal properties of ionic liquids. RSC Advances, 2013, 3, 2422.	1.7	44
74	Size-discrimination of volatile organic compounds utilizing gallium diiminate by luminescent chromism of crystallization-induced emission via encapsulation-triggered crystal–crystal transition. Journal of Materials Chemistry C, 2016, 4, 5564-5571.	2.7	44
75	Enhancement of affinity in molecular recognition viahydrogen bonds by POSS-core dendrimer and its application for selective complex formation between guanosine triphosphate and 1,8-naphthyridine derivatives. Organic and Biomolecular Chemistry, 2012, 10, 90-95.	1.5	43
76	Synthesis and Optical Properties of Stable Gallafluorene Derivatives: Investigation of Their Emission via Triplet States. Journal of the American Chemical Society, 2013, 135, 4211-4214.	6.6	41
77	Ratiometric multimodal chemosensors based on cubic silsesquioxanes for monitoring solvent polarity. Bioorganic and Medicinal Chemistry, 2008, 16, 10029-10033.	1.4	40
78	POSS ionic liquid crystals. NPG Asia Materials, 2015, 7, e174-e174.	3.8	39
79	Electron-donating abilities and luminescence properties of tolane-substituted nido-carboranes. New Journal of Chemistry, 2017, 41, 10550-10554.	1.4	39
80	Modulation of the solid-state luminescent properties of conjugated polymers by changing the connecting points of flexible boron element blocks. Polymer Journal, 2020, 52, 555-566.	1.3	39
81	Construction of the Luminescent Donor–Acceptor Conjugated Systems Based on Boron-Fused Azomethine Acceptor. Macromolecules, 2019, 52, 3387-3393.	2.2	38
82	Improving Proton Relaxivity of Dendritic MRI Contrast Agents by Rigid Silsesquioxane Core. Polymer Journal, 2009, 41, 287-292.	1.3	37
83	Nearâ€Infrared Circularly Polarized Luminescence through Intramolecular Excimer Formation of Oligo(<i>p</i> p\$\rightarrow{\text{i}} \text{\$\text{\$\text{\$\text{\$}}}\$ phenyleneethynylene} \text{\$\text{\$\text{\$\text{\$}}}\$ ased Double Helicates. Chemistry - A European Journal, 2019, 25, 9211-9216.	1.7	37
84	Recent Progress in the Development of Solidâ€State Luminescent <i>o</i> â€Carboranes with Stimuli Responsivity. Angewandte Chemie, 2020, 132, 9925-9939.	1.6	36
85	Design for multi-step mechanochromic luminescence property by enhancement of environmental sensitivity in a solid-state emissive boron complex. Materials Chemistry Frontiers, 2020, 4, 1781-1788.	3.2	36
86	Rational design of polyhedral oligomeric silsesquioxane fillers for simultaneous improvements of thermomechanical properties and lowering refractive indices of polymer films. Journal of Polymer Science Part A, 2013, 51, 3583-3589.	2.5	35
87	Synthesis and properties of highly-rigid conjugation system based on bi(benzo[b]thiophene)-fused o-carborane. Tetrahedron Letters, 2016, 57, 2025-2028.	0.7	35
88	Near-Infrared Absorptive and Emissive Poly(<i>p</i> p+olylene vinylene) Derivative Containing Azobenzene–Boron Complexes. Macromolecules, 2020, 53, 4524-4532.	2.2	35
89	Efficient light-harvesting, energy migration, and charge transfer by nanographene-based nonfullerene small-molecule acceptors exhibiting unusually long excited-state lifetime in the film state. Chemical Science, 2020, 11, 3250-3257.	3.7	35
90	Enhancement of optical properties of dyes for bioprobes by freezing effect of molecular motion using POSS-core dendrimers. Bioorganic and Medicinal Chemistry, 2012, 20, 915-919.	1.4	34

#	Article	IF	Citations
91	Synthesis of POSS Derivatives Having Dual Types of Alkyl Substituents and Their Application as a Molecular Filler for Low-Refractive and Highly Durable Materials. Bulletin of the Chemical Society of Japan, 2017, 90, 205-209.	2.0	33
92	Reductive Glutathione-Responsive Molecular Release Using Water-Soluble POSS Network Polymers. Bulletin of the Chemical Society of Japan, 2011, 84, 612-616.	2.0	31
93	Heavy metal-free 19F NMR probes for quantitative measurements of glutathione reductase activity using silica nanoparticles as a signal quencher. Bioorganic and Medicinal Chemistry, 2012, 20, 96-100.	1.4	31
94	Hypoxic condition-selective upconversion via triplet–triplet annihilation based on POSS-core dendrimer complexes. Bioorganic and Medicinal Chemistry, 2013, 21, 2678-2681.	1.4	31
95	Transformation of sulfur to organic-inorganic hybrids employed by networks and their application for the modulation of refractive indices. Journal of Polymer Science Part A, 2014, 52, 2588-2595.	2.5	31
96	Synthesis and Characterization of Gallafluorene-Containing Conjugated Polymers: Control of Emission Colors and Electronic Effects of Gallafluorene Units on Ĭ€-Conjugation System. Macromolecules, 2015, 48, 1343-1351.	2.2	31
97	Simple and valid strategy for the enhancement of the solid-emissive property of boron dipyrromethenes. Tetrahedron Letters, 2015, 56, 6786-6790.	0.7	31
98	Preparation and fluorescence properties of fluorophore-labeled avidin–biotin system immobilized on Fe3O4 nanoparticles through functional indolequinone linker. Bioorganic and Medicinal Chemistry, 2009, 17, 3775-3781.	1.4	30
99	Reduced glutathione-resisting 19F NMR sensors for detecting HNO. Bioorganic and Medicinal Chemistry, 2012, 20, 4668-4674.	1.4	30
100	Timeâ€Dependent Emission Enhancement of the Ethynylpyreneâ€ <i>>o</i>)â€Carborane Dyad and Its Application as a Luminescent Color Sensor for Evaluating Water Contents in Organic Solvents. Chemistry - an Asian Journal, 2019, 14, 1577-1581.	1.7	30
101	POSS-based molecular fillers for simultaneously enhancing thermal and viscoelasticity of poly(methyl methacrylate) films. Materials Letters, 2017, 203, 62-67.	1.3	29
102	Remarkably high miscibility of octa-substituted POSS with commodity conjugated polymers and molecular fillers for the improvement of homogeneities of polymer matrices. Polymer Journal, 2016, 48, 1133-1139.	1.3	28
103	Modulation of the <i>cis</i> ―and <i>trans</i> conformations in Bisâ€ <i>o</i> carborane Substituted Benzodithiophenes and Emission Enhancement Effect on Luminescent Efficiency by Solidification. European Journal of Organic Chemistry, 2018, 2018, 1507-1512.	1.2	28
104	Elastic and mechanofluorochromic hybrid films with POSS-capped polyurethane and polyfluorene. Materials Chemistry Frontiers, 2019, 3, 1174-1180.	3.2	28
105	Synthesis of fully-fused bisboron azomethine complexes and their conjugated polymers with solid-state near-infrared emission. Chemical Communications, 2020, 56, 6575-6578.	2.2	28
106	Synthesis and color tuning of boron diiminate conjugated polymers with aggregation-induced scintillation properties. RSC Advances, 2015, 5, 96653-96659.	1.7	27
107	Control of intramolecular excimer emission in luminophore-integrated ionic POSSs possessing flexible side-chains. Materials Chemistry Frontiers, 2018, 2, 1449-1455.	3.2	27
108	Synthesis of conjugated polymers containing gallium atoms and evaluation of conjugation through four-coordinate gallium atoms. Chemical Communications, 2014, 50, 15740-15743.	2,2	26

#	Article	IF	Citations
109	Light-driven artificial enzymes for selective oxidation of guanosine triphosphate using water-soluble POSS network polymers. Organic and Biomolecular Chemistry, 2014, 12, 6500.	1.5	26
110	Controllable intramolecular interaction of 3D arranged π-conjugated luminophores based on a POSS scaffold, leading to highly thermally-stable and emissive materials. RSC Advances, 2016, 6, 78652-78660.	1.7	26
111	Tuning of Sensitivity in Thermochromic Luminescence by Regulating Molecular Rotation Based on Triphenylamineâ€Substituted <i>>o</i> >â€Carboranes. Asian Journal of Organic Chemistry, 2019, 8, 2228-2232.	1.3	26
112	Improvement of Solidâ€State Excimer Emission of the Aryl–Ethynylâ€∢i>oà€€arborane Skeleton by Acridine Introduction. European Journal of Organic Chemistry, 2019, 2019, 2984-2988.	1.2	26
113	Stimuli-responsive luminochromic polymers consisting of multi-state emissive fused boron ketoiminate. Polymer Chemistry, 2020, 11, 1127-1133.	1.9	26
114	Molecular design and application of luminescent materials composed of group 13 elements with an aggregation-induced emission property. National Science Review, 2021, 8, nwab049.	4.6	26
115	Assembly system of direct modified superparamagnetic iron oxide nanoparticles for target-specific MRI contrast agents. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 5463-5465.	1.0	25
116	Isolation of Ï€â€conjugated system through polyfluorene from electronic coupling with sideâ€chain substituents by cardo structures. Journal of Polymer Science Part A, 2012, 50, 4433-4442.	2.5	25
117	Synthesis of Ï€â€Conjugated Polymers Containing Aminoquinolineâ€Borafluorene Complexes in the Mainâ€Chain. Macromolecular Rapid Communications, 2012, 33, 550-555.	2.0	25
118	Synthesis of dual-emissive polymers based on ineffective energy transfer through cardo fluorene-containing conjugated polymers. Polymer, 2015, 60, 228-233.	1.8	25
119	Preservation of main-chain conjugation through BODIPY-containing alternating polymers from electronic interactions with side-chain substituents by cardo boron structures. Polymer Chemistry, 2016, 7, 2799-2807.	1.9	25
120	Synthesis of Aggregation-Induced Emission-Active Conjugated Polymers Composed of Group 13 Diiminate Complexes with Tunable Energy Levels via Alteration of Central Element. Polymers, 2017, 9, 68.	2.0	25
121	Enhancement of Luminescence Efficiencies by Thermal Rearrangement from <i>ortho</i> ―to <i>meta</i> â€Carborane in Bisâ€Carboraneâ€Substituted Acenes. European Journal of Organic Chemistry, 2018, 2018, 1885-1890.	1.2	25
122	Dual emission <i>via</i> remote control of molecular rotation of <i>o</i> carborane in the excited state by the distant substituents in tolane-modified dyads. New Journal of Chemistry, 2018, 42, 4210-4214.	1.4	25
123	Luminescent color tuning with polymer films composed of boron diiminate conjugated copolymers by changing the connection points to comonomers. Polymer Chemistry, 2018, 9, 1942-1946.	1.9	25
124	Experimental proof for emission annihilation through bond elongation at the carbon–carbon bond in <i>o</i> -carborane with fused biphenyl-substituted compounds. Dalton Transactions, 2021, 50, 1025-1033.	1.6	25
125	Dimerization-Induced Solid-State Excimer Emission Showing Consecutive Thermochromic Luminescence Based on Acridine-Modified <i>>o</i> >Carboranes. Inorganic Chemistry, 2021, 60, 8990-8997.	1.9	25
126	Synthesis of emissive water-soluble network polymers based on polyhedral oligomeric silsesquioxane and their application as optical sensors for discriminating the particle size. Journal of Materials Chemistry C, 2015, 3, 12539-12545.	2.7	24

#	Article	IF	CITATIONS
127	New Idea for Narrowing an Energy Gap by Selective Perturbation of One Frontier Molecular Orbital. Chemistry Letters, 2021, 50, 269-279.	0.7	24
128	Facile design of organic–inorganic hybrid gels for molecular recognition of nucleoside triphosphates. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 2050-2055.	1.0	23
129	The Design Strategy for an Aggregation- and Crystallization-Induced Emission-Active Molecule Based on the Introduction of Skeletal Distortion by Boron Complexation with a Tridentate Ligand. Crystals, 2020, 10, 615.	1.0	23
130	CPL on/off control of an assembled system by water soluble macrocyclic chiral sources with planar chirality. Chemical Science, 2022, 13, 5846-5853.	3.7	23
131	Synthesis of Air- and Moisture-Stable Dibenzogallepins: Control of Planarity of Seven-Membered Rings in Solid States by Coordination to Gallium Atoms. Organic Letters, 2015, 17, 1593-1596.	2.4	22
132	Synthesis of furan-substituted aza-BODIPYs having near-infrared emission. Tetrahedron Letters, 2017, 58, 2989-2992.	0.7	22
133	Electronic chirality inversion of lanthanide complex induced by achiral molecules. Scientific Reports, 2018, 8, 16395.	1.6	22
134	Design of Thermochromic Luminescent Dyes Based on the Bis(ortho arborane) ubstituted Benzobithiophene Structure. Chemistry - an Asian Journal, 2019, 14, 789-795.	1.7	22
135	Electronic strain effect on Eu(<scp>iii</scp>) complexes for enhanced circularly polarized luminescence. Dalton Transactions, 2020, 49, 5352-5361.	1.6	22
136	Development of the optical sensor for discriminating isomers of fatty acids based on emissive network polymers composed of polyhedral oligomeric silsesquioxane. Bioorganic and Medicinal Chemistry, 2017, 25, 3431-3436.	1.4	21
137	Comparison of luminescent properties of helicene-like bibenzothiophenes with o-carborane and 5,6-dicarba-nido-decaborane. Science China Chemistry, 2018, 61, 940-946.	4.2	21
138	Unique Substitution Effect at 5,5′â€Positions of Fused Azobenzene–Boron Complexes with a N=N Ï€â€Conjugated System. Chemistry - an Asian Journal, 2019, 14, 1837-1843.	1.7	21
139	Liquid scintillators with near infrared emission based on organoboron conjugated polymers. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 5331-5334.	1.0	20
140	Tunable Optical Property between Pure Red Luminescence and Dual Emission Depended on the Length of Light-Harvesting Antennae in the Dyads Containing the Cardo Structure of BODIPY and Oligofluorene. Macromolecules, 2016, 49, 8899-8904.	2.2	20
141	A Highly Efficient Nearâ€Infraredâ€Emissive Copolymer with a N=N Doubleâ€Bond Ï€â€Conjugated System Based on a Fused Azobenzene–Boron Complex. Angewandte Chemie, 2018, 130, 6656-6661.	1.6	20
142	Facile strategy for obtaining luminescent polymorphs based on the chirality of a boron-fused azomethine complex. Chemical Communications, 2020, 56, 15305-15308.	2.2	20
143	Preparation of Nearâ€Infrared Emissive Ï€â€Conjugated Polymer Films Based on Boronâ€Fused Azobenzene Complexes with Perpendicularly Protruded Aryl Substituents. Macromolecular Rapid Communications, 2021, 42, e2000566.	2.0	20
144	Rational design for thermochromic luminescence in amorphous polystyrene films with bisâ€∢i>oà€€arboraneâ€substituted enhanced conjugated molecule having aggregationâ€induced luminochromism. Aggregate, 2021, 2, e93.	5.2	20

#	Article	IF	CITATIONS
145	Design Strategies and Recent Results for Near-Infrared-Emissive Materials Based on Element-Block π-Conjugated Polymers. Bulletin of the Chemical Society of Japan, 2021, 94, 2290-2301.	2.0	20
146	Discovery of Functional Luminescence Properties Based on Flexible and Bendable Boronâ€Fused Azomethine/Azobenzene Complexes with O,N,Oâ€Type Tridentate Ligands. Chemical Record, 2021, 21, 1358-1373.	2.9	20
147	Methylcytosine-selective fluorescence quenching by osmium complexation. Bioorganic and Medicinal Chemistry, 2007, 15, 1615-1621.	1.4	19
148	Enhancement of dye dispersibility in silica hybrids through local heating induced by the Imidazolium group under microwave irradiation. Polymer Journal, 2014, 46, 195-199.	1.3	19
149	Characterization and Photophysical Properties of a Luminescent Aluminum Hydride Complex Supported by a \hat{l}^2 -Diketiminate Ligand. Inorganics, 2019, 7, 100.	1.2	19
150	Recent developments in stimuli-responsive luminescent polymers composed of boron compounds. Polymer Chemistry, 2021, 12, 6372-6380.	1.9	19
151	Ï€-Conjugated Copolymers Composed of Boron Formazanate and Their Application for a Wavelength Converter to Near-Infrared Light. Macromolecules, 2021, 54, 1934-1942.	2.2	19
152	Biodegradable Main-Chain Phosphate-Caged Fluorescein Polymers for the Evaluation of Enzymatic Activity. Macromolecules, 2010, 43, 6180-6184.	2.2	18
153	Synthesis of benzo[h]quinoline-based neutral pentacoordinate organosilicon complexes. Chemical Communications, 2012, 48, 8541.	2.2	18
154	Photo-triggered molecular release based on auto-degradable polymer-containing organic–inorganic hybrids. Bioorganic and Medicinal Chemistry, 2014, 22, 3435-3440.	1.4	18
155	Development of emissive aminopentaazaphenalene derivatives employing a design strategy for obtaining luminescent conjugated molecules by modulating the symmetry of molecular orbitals with substituent effects. Chemical Communications, 2017, 53, 5036-5039.	2.2	18
156	Regulation of solid-state dual-emission properties by switching luminescence processes based on a bis- <i>o</i> -carborane-modified anthracene triad. Materials Chemistry Frontiers, 2022, 6, 1414-1420.	3.2	18
157	Synthesis of Dibenzo[b,f]silepins with a Benzoquinolyl Ligand. Organic Letters, 2013, 15, 2366-2369.	2.4	17
158	Energy transfer through heterogeneous dyesâ€substituted fluoreneâ€containing alternating copolymers and their dualâ€emission properties in the films. Journal of Polymer Science Part A, 2015, 53, 2026-2035.	2.5	17
159	Color tuning of alternating conjugated polymers composed of pentaazaphenalene by modulating their unique electronic structures involving isolated-LUMOs. Polymer Chemistry, 2016, 7, 3674-3680.	1.9	17
160	Design of Conjugated Molecules Presenting Shortâ€Wavelength Luminescence by Utilizing Heavier Atoms of the Same Element Group. Chemistry - an Asian Journal, 2018, 13, 1342-1347.	1.7	17
161	Independently Tuned Frontier Orbital Energy Levels of 1,3,4,6,9b-Pentaazaphenalene Derivatives by the Conjugation Effect. Journal of Organic Chemistry, 2019, 84, 2768-2778.	1.7	17
162	Synthesis of an artificial hole-transporting nucleoside triphosphate, dMDATP, and its enzymatic incorporation into DNA. Bioorganic and Medicinal Chemistry, 2004, 12, 5875-5880.	1.4	16

#	Article	IF	Citations
163	Synthesis and tuning of optical properties of conjugated polymers involving benzo[h]quinoline-based neutral pentacoordinate organosilicon complexes in the main chain. Polymer Chemistry, 2013, 4, 5237.	1.9	16
164	Development of highly-sensitive detection system in 19 F NMR for bioactive compounds based on the assembly of paramagnetic complexes with fluorinated cubic silsesquioxanes. Bioorganic and Medicinal Chemistry, 2017, 25, 1389-1393.	1.4	16
165	Synthesis of a near-infrared light-absorbing polymer based on thiophene-substituted Aza-BODIPY. Polymer Journal, 2018, 50, 271-275.	1.3	16
166	Synthesis, properties and structure of borafluorene-based conjugated polymers with kinetically and thermodynamically stabilized tetracoordinated boron atoms. Polymer Journal, 2018, 50, 197-202.	1.3	16
167	Tuning the NIR Absorption Properties of 1,3,4,6,9bâ€Pentaazaphenalene Derivatives Through the Spatially Separated Frontier Molecular Orbitals. European Journal of Organic Chemistry, 2020, 2020, 777-783.	1.2	16
168	Enhancing Lightâ€Absorption and Luminescent Properties of Nonâ€Emissive 1,3,4,6,9bâ€Pentaazaphenalene through Perturbation of Forbidden Electronic Transition by Boron Complexation. Asian Journal of Organic Chemistry, 2020, 9, 259-266.	1.3	16
169	The effect of alkyl chain lengths on the red-to-near-infrared emission of boron-fused azomethine conjugated polymers and their film-state stimuli-responsivities. Polymer Chemistry, 2021, 12, 2752-2759.	1.9	16
170	Switching between intramolecular charge transfer and excimer emissions in solids based on aryl-modified ethynylâ€'o-carboranes. Cell Reports Physical Science, 2022, 3, 100758.	2.8	16
171	2-Amino-7-deazaadenine forms stable base pairs with cytosine and thymine. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 97-99.	1.0	15
172	Preparation of environmentally resistant conductive silica-based polymer hybrids containing tetrathiafulvalene–tetracyanoquinodimethane charge-transfer complexes. Polymer Journal, 2014, 46, 800-805.	1.3	15
173	Fluorescence and phosphorescence study of germanium–acetylene polymers and germa[N]pericyclynes. Polymer Chemistry, 2015, 6, 7495-7499.	1.9	15
174	An optical sensor for discriminating the chemical compositions and sizes of plastic particles in water based on water-soluble networks consisting of polyhedral oligomeric silsesquioxane presenting dual-color luminescence. Materials Chemistry Frontiers, 2019, 3, 2690-2695.	3.2	15
175	Controlling Energy Gaps of Ï€â€Conjugated Polymers by Multiâ€Fluorinated Boronâ€Fused Azobenzene Acceptors for Highly Efficient Nearâ€Infrared Emission. Chemistry - an Asian Journal, 2021, 16, 696-703.	1.7	15
176	Development of NIR emissive fully-fused bisboron complexes with π-conjugated systems including multiple azo groups. Dalton Transactions, 2021, 51, 74-84.	1.6	15
177	Synthesis and duplex stability of oligonucleotides containing 7-vinyl-7-deazaguanine as a strong electron-donating nucleobase. Tetrahedron Letters, 2000, 41, 10035-10039.	0.7	14
178	Conductivity regulation of the mixed-valence tetrathiafulvalene nanowire/poly(methyl methacrylate) composites using heterogeneous tetrathiafulvalene derivatives. Journal of Materials Chemistry, 2011, 21, 9603.	6.7	14
179	Design of functionalized nanoparticles for the applications in nanobiotechnology. Advanced Powder Technology, 2014, 25, 101-113.	2.0	14
180	Synthesis of dual-emissive organometallic complexes containing heterogeneous metal elements. Tetrahedron Letters, 2014, 55, 6477-6481.	0.7	14

#	Article	IF	Citations
181	Synthesis and Characterization of Heterofluorenes with Five-coordinated Group 13 Elements. Chemistry Letters, 2015, 44, 1658-1660.	0.7	14
182	High HOMO levels and narrow energy band gaps of dithienogalloles. RSC Advances, 2015, 5, 55406-55410.	1.7	14
183	Vapochromic Luminescent Ï€â€Conjugated Systems with Reversible Coordinationâ€Number Control of Hypervalent Tin(IV)â€Fused Azobenzene Complexes. Chemistry - A European Journal, 2021, 27, 7561-7571.	1.7	14
184	A Nucleobase that Releases Reporter Tags upon DNA Oxidation. Journal of the American Chemical Society, 2004, 126, 416-417.	6.6	13
185	Properties of Superparamagnetic Iron Oxide Nanoparticles Assembled on Nucleic Acids. Nucleic Acids Symposium Series, 2008, 52, 693-694.	0.3	13
186	Construction of multi-N-heterocycle-containing organic solvent-soluble polymers with 1,3,4,6,9b-pentaazaphenalene. Polymer Journal, 2014, 46, 688-693.	1.3	13
187	Adamantane ionic liquids. RSC Advances, 2014, 4, 28107.	1.7	13
188	Facile Preparation of Concentration-Gradient Materials with Radical Spin of the Mixed-Valence Tetrathiafulvalene in Conventional Polymer Films. Langmuir, 2010, 26, 10254-10258.	1.6	12
189	Preparation of clusters having various interparticle distances based on imidazolium-modified gold nanoparticles via anion exchange. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 390, 126-133.	2.3	12
190	Heat-initiated detection for reduced glutathione with 19F NMR probes based on modified gold nanoparticles. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 281-286.	1.0	12
191	Regulation of responsiveness of phosphorescence toward dissolved oxygen concentration by modulating polymer contents in organic–inorganic hybrid materials. Bioorganic and Medicinal Chemistry, 2014, 22, 3141-3145.	1.4	12
192	Preparation of bright-emissive hybrid materials based on light-harvesting POSS having radially integrated luminophores and commercial π-conjugated polymers. Materials Chemistry Frontiers, 2019, 3, 314-320.	3.2	12
193	Optical, Electrical and Thermal Properties of Organic–Inorganic Hybrids with Conjugated Polymers Based on POSS Having Heterogeneous Substituents. Polymers, 2019, 11, 44.	2.0	12
194	Development of the sensitizer for generating higher-energy photons under diluted condition via the triplet-triplet annihilation-supported upconversion. Dyes and Pigments, 2020, 172, 107821.	2.0	12
195	Design of a pyrene-containing fluorescence probe for labeling of RNA poly(A) tracts. Bioorganic and Medicinal Chemistry, 2008, 16, 400-404.	1.4	11
196	Transparent conductive films based on polymer composites containing the mixedâ€valence tetrathiafulvalene nanofibers. Journal of Polymer Science Part A, 2009, 47, 6441-6450.	2.5	11
197	Arsonic acid-presenting superparamagnetic iron oxide for pH-responsive aggregation under slightly acidic conditions. Bioorganic and Medicinal Chemistry, 2011, 19, 2282-2286.	1.4	11
198	Synthesis and Characterization of Ethynylated Germa [4] pericyclyne. Chemistry Letters, 2016, 45, 782-784.	0.7	11

#	Article	IF	CITATIONS
199	Paintable Hybrids with Thermally Stable Dual Emission Composed of Tetraphenylethene-Integrated POSS and MEH-PPV for Heat-Resistant White-Light Luminophores. ACS Applied Materials & Discrete Samp; Interfaces, 2021, 13, 12483-12490.	4.0	11
200	Controlling the Dualâ€Emission Character of Arylâ€Modified <i>>o</i> i>â€Carboranes by Intramolecular CHâ‹â‹â·lnteraction Sites. Chemistry - A European Journal, 2022, 28, e202200758.	··1:9	11
201	Rapid heat generation under microwave irradiation by imidazolium-presenting silica nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 428, 65-69.	2.3	10
202	Synthesis of highly transparent conductive films with strong absorption in near-infrared region based on tetrathiafulvalene-tethered pendant-type polymers. Synthetic Metals, 2013, 163, 13-18.	2.1	10
203	Fragmentation patterns of methyloxime-trimethylsilyl derivatives of constitutive mono- and disaccharide isomers analyzed by gas chromatography/field ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 2015, 29, 238-246.	0.7	10
204	Extended germa[N]pericyclynes: synthesis and characterization. Dalton Transactions, 2017, 46, 2281-2288.	1.6	10
205	Fluoroalkyl POSS with Dual Functional Groups as a Molecular Filler for Lowering Refractive Indices and Improving Thermomechanical Properties of PMMA. Polymers, 2018, 10, 1332.	2.0	10
206	Stretchable Conductive Hybrid Films Consisting of Cubic Silsesquioxane-capped Polyurethane and Poly(3-hexylthiophene). Polymers, 2019, 11, 1195.	2.0	10
207	Efficient Exciton Diffusion in Micrometer-Sized Domains of Nanographene-Based Nonfullerene Acceptors with Long Exciton Lifetimes in Blend Films with Conjugated Polymer. ACS Applied Materials & Distribution (National Properties of National Properties of	4.0	10
208	Photoresponsive polymeric actuator cross-linked by an 8-armed polyhedral oligomeric silsesquioxane. European Polymer Journal, 2020, 134, 109806.	2.6	10
209	Reversible Vapochromic Luminescence Accompanied by Planar Halfâ€Chair Conformational Change of a Propellerâ€Shaped Boron βâ€Diketiminate Complex. Chemistry - A European Journal, 2021, 27, 9302-9312.	1.7	10
210	PPV-type π-conjugated polymers based on hypervalent tin(IV)-fused azobenzene complexes showing near-infrared absorption and emission. Polymer Journal, 2021, 53, 1241-1249.	1.3	10
211	Double Heterohelicenes Composed of Benzo[b]- and Dibenzo[b,i]phenoxazine: A Comprehensive Comparison of Their Electronic and Chiroptical Properties. Journal of Physical Chemistry Letters, 2021, 12, 9283-9292.	2.1	10
212	Stimuli-Responsive Self-Assembly of π-Conjugated Liquids Triggers Circularly Polarized Luminescence. ACS Applied Materials & Diterfaces, 2021, 13, 47127-47133.	4.0	10
213	Photoinduced Radical Generation and Self-Assembly of Tetrathiafulvalene into the Mixed-Valence State in the Poly(vinyl chloride) Film under UV Irradiation. Langmuir, 2010, 26, 1152-1156.	1.6	9
214	Tumor cell-specific prodrugs using arsonic acid-presenting iron oxide nanoparticles with high sensitivity. Bioorganic and Medicinal Chemistry, 2012, 20, 4675-4679.	1.4	9
215	Control of solution and solid-state emission with conjugated polymers based on the boron pyridinoiminate structure by ring fusion. Polymer, 2018, 142, 127-131.	1.8	9
216	Catch and release with DNA by imidazolium-presenting iron oxide nanoparticles via anion exchange. Composite Interfaces, 2013, 20, 27-32.	1.3	8

#	Article	IF	CITATIONS
217	Areneâ€Inserted Extended Germa[<i>n</i>)pericyclynes: Synthesis, Structure, and Phosphorescence Properties. Chemistry - A European Journal, 2017, 23, 10080-10086.	1.7	8
218	Pure-color and dual-color emission from BODIPY homopolymers containing the cardo boron structure. Polymer Chemistry, 2018, 9, 3917-3921.	1.9	8
219	Controlling the Dualâ€Emission Character of Arylâ€Modified <i>o</i> a€Carboranes by Intramolecular CHâ<â<âallinteraction Sites. Chemistry - A European Journal, 2022, 28, .	·. _{1:} 9	8
220	Production of three radical cations from a single photon using a photo acid generator. Tetrahedron Letters, 2014, 55, 1635-1639.	0.7	7
221	Construction and properties of a light-harvesting antenna system for phosphorescent materials based on oligofluorene-tethered Pt–porphyrins. RSC Advances, 2017, 7, 10869-10874.	1.7	7
222	Molecular fillers for increasing the refractive index of polystyrene hybrids by chain assembly at polyhedral oligomeric silsesquioxane. Polymer Journal, 2020, 52, 523-528.	1.3	7
223	Modulation of <scp>stimuliâ€responsiveness</scp> toward acid vapor between <scp>realâ€time</scp> and <scp>writeâ€erase</scp> responses based on conjugated polymers containing azobenzene and Schiff base moieties. Journal of Polymer Science, 2021, 59, 1596-1602.	2.0	7
224	Effects of Regioregularity of <i>i∈</i> a∈Conjugated Polymers Composed of Boron <i>β</i> a∈Diketiminate on Their Stimuliâ∈Responsive Luminescence. Macromolecular Chemistry and Physics, 2022, 223, .	1.1	7
225	Recent Progress on Designable Hybrids with Stimuliâ€Responsive Optical Properties Originating from Molecular Assembly Concerning Polyhedral Oligomeric Silsesquioxane. Chemistry - an Asian Journal, 2022, 17, .	1.7	7
226	Production of radical species and modification of DNA through one-electron reduction with indium metal. Tetrahedron Letters, 2007, 48, 3167-3169.	0.7	6
227	Oxygen-Resistant Electrochemiluminescence System with Polyhedral Oligomeric Silsesquioxane. Polymers, 2019, 11, 1170.	2.0	6
228	Conformation-Dependent Electron Donation of Nido-Carborane Substituents and Its Influence on Phosphorescence of Tris(2,2′-bipyridyl)ruthenium(II) Complex. Crystals, 2022, 12, 688.	1.0	6
229	Unique hole-Trapping property of the degenerate base, 2-amino-7-deazaadenine. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 3641-3643.	1.0	5
230	Prolongation of the singlet exciton lifetime of nonfullerene acceptor films by the replacement of the central benzene core with naphthalene. Sustainable Energy and Fuels, 2021, 5, 2028-2035.	2.5	5
231	The Effect of the Substituent Positions on Self-Assembly Behaviors of Liquid-Crystalline 1,3,4,6,9b-Pentaazaphenalene Derivatives. Bulletin of the Chemical Society of Japan, 2021, 94, 1854-1858.	2.0	5
232	Development of Long Wavelength Light-Absorptive Homopolymers Based on Pentaazaphenalene by Regioselective Oxidative Polymerization. Polymers, 2021, 13, 4021.	2.0	5
233	Effect of Terminal-Group Halogenation of Naphthalene-Based Nonfullerene Acceptors on Their Film Structure and Photophysical and Photovoltaic Properties. ACS Applied Energy Materials, 2021, 4, 14022-14033.	2.5	5
234	Asymmetric Lumino-Transformer: Circularly Polarized Luminescence of Chiral Eu(III) Coordination Polymer with Phase-Transition Behavior. Journal of Physical Chemistry B, 2022, 126, 3799-3807.	1.2	5

#	Article	IF	CITATIONS
235	Preparation of flexible conductive films based on polymer composites with tetrathiafulvalene nanowires. Synthetic Metals, 2013, 180, 49-53.	2.1	4
236	Control of interparticle spacing in stable aggregates of gold nanoparticles by light irradiation. Polymer Journal, 2015, 47, 747-752.	1.3	4
237	Self-assembly of [Au(CN) ₂] ^{â^'} Complexes with Tomato (<i>Solanum) Tj ETQq1 1 0.7845 Letters, 2018, 47, 1010-1013.</i>	314 rgBT / 0.7	Overlock 10 4
238	High Refractive-Index Hybrids Consisting of Water-Soluble Matrices with Bipyridine-Modified Polyhedral Oligomeric Silsesquioxane and Lanthanoid Cations. Polymers, 2020, 12, 1560.	2.0	4
239	Positive Luminescent Sensor for Aerobic Conditions Based on Polyhedral Oligomeric Silsesquioxane Networks. Chemical Research in Chinese Universities, 2021, 37, 162-165.	1.3	4
240	Synthesis, crystal structure, solid-state optical property and C–H activation of sp ³ carbon of highly-stable 1-(2′,6′-dimesitylphenyl)-2,3,4,5-tetraphenylborole. New Journal of Chemistry, 2021, 45, 22569-22573.	1.4	4
241	Modulation of Properties by Ion Changing Based on Luminescent Ionic Salts Consisting of Spirobi(boron ketoiminate). Molecules, 2022, 27, 3438.	1.7	4
242	Microwave-driven enzyme deactivation using imidazolium salt-presenting silica nanoparticles. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4622-4625.	1.0	3
243	Synthesis of Ï∈-Conjugated Polymers Containing Dibenzosilepin Moieties with Pentacoordinate Silicon. Bulletin of the Chemical Society of Japan, 2015, 88, 1350-1355.	2.0	3
244	Synthesis of a Platinum Diketonateâ€Containing Polymer Showing Oxygenâ€Resistant Phosphorescence. Macromolecular Rapid Communications, 2015, 36, 684-688.	2.0	3
245	Integration of benzo[h]quinoline and π-extended dibenzo[b,f]silepins on pentacoordinate silicon. RSC Advances, 2015, 5, 23331-23339.	1.7	3
246	Luminescent Organoboron Element-Blocks Exhibiting AlE Properties. ACS Symposium Series, 2016, , $157-174$.	0.5	3
247	Molecular Designs for Solid-State Luminescent Properties and Recent Progresses on the Development of Functional Luminescent Solid Materials., 2021,, 309-341.		2
248	Artificial Nucleobases for Hole Transport. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2007, 65, 204-215.	0.0	2
249	Clear distinction of pyrimidine bases on the complementary strand by fluorescence change of novel fluorescent nucleosides. Nucleic Acids Symposium Series, 2003, 3, 171-172.	0.3	1
250	Acceleration of guanine oxidation under visible light irradiation by photon upconversion based on triplet-triplet annihilation. Nucleic Acids Symposium Series, 2009, 53, 183-184.	0.3	1
251	Regulation of dispersion/aggregation of phosphonium-presenting iron oxide nanoparticles by anion exchange. Composite Interfaces, 2012, 19, 557-564.	1.3	1
252	Polystyrene–Polyhedral Oligomeric Silsesquioxane Core–Shell Element-block Polymer Particles Fabricated via Heterocoagulation Method. Chemistry Letters, 2016, 45, 1168-1170.	0.7	1

#	Article	IF	Citations
253	Preparation of photo-responsive hybrid materials based on hydrogels involving imidazolium-presenting gold nanoparticles. Polymer Journal, 2016, 48, 177-181.	1.3	1
254	Element-Block Materials: New Concept for the Development of Advanced Hybrids and Inorganic Polymers., 2019,, 3-25.		1
255	Rational Designs of AIE-Active Molecules and Luminochromic Materials Based on Group 13 Element-Containing Element-Blocks. , 2019, , 27-42.		1
256	Enzymatic ligation and extension of DNA wire. Nucleic Acids Symposium Series, 2003, 3, 39-40.	0.3	0
257	Development of the drug release system in hole transfer reaction through DNA. Nucleic Acids Symposium Series, 2003, 3, 153-154.	0.3	0
258	Self-Assembled Dimerization of Bis(crown ether)-2,2 \hat{a} e-bibenzimidazoles. Bulletin of the Chemical Society of Japan, 2014, 87, 88-97.	2.0	0
259	Macromol. Chem. Phys. 3/2016. Macromolecular Chemistry and Physics, 2016, 217, 520-520.	1.1	0
260	Front Cover: Design and Luminescence Chromism of Fused Boron Complexes Having Constant Emission Efficiencies in Solution and in the Amorphous and Crystalline States (Eur. J. Org. Chem. 35/2017). European Journal of Organic Chemistry, 2017, 2017, 5178-5178.	1.2	0
261	Development and Applications of Designable Hybrids Based on POSS "Element-Blocks". Kobunshi Ronbunshu, 2017, 74, 145-161.	0.2	0
262	Nearâ€Infrared Circularly Polarized Luminescence through Intramolecular Excimer Formation of Oligo(pâ€phenyleneethynylene)â€Based Double Helicates. Chemistry - A European Journal, 2019, 25, 9122-9122.	1.7	0
263	Developments of Molecular Probes for Detecting Biological Events Based on Polymeric Materials. Kobunshi Ronbunshu, 2012, 69, 468-484.	0.2	0
264	Development of Organic-Inorganic Hybrid Materials. Journal of the Society of Powder Technology, Japan, 2013, 50, 670-681.	0.0	0
265	Organoboron Polymers. , 2014, , 1-12.		0
266	Development of Modified Silica Nanoparticles Working as a Heat Source under Microwave Irradiation. Hosokawa Powder Technology Foundation ANNUAL REPORT, 2015, 23, 100-104.	0.0	0
267	Development of Optical Sensor for Discriminating Particle Sizes. Hosokawa Powder Technology Foundation ANNUAL REPORT, 2018, 26, 100-104.	0.0	0
268	Recent Progress in the Development of Optoelectronic Materials Based on Group 13 Element-containing Conjugated Polymers. , 2019, , 489-515.		0
269	Acceleration of Chemiluminescence Reactions with Coumarin-Modified Polyhedral Oligomeric Silsesquioxane. Bulletin of the Chemical Society of Japan, 2022, 95, 743-747.	2.0	0
270	Fundamental chemistry and applications of boron complexes having aggregation-induced emission properties., 2022,, 23-44.		0

#	Article	IF	CITATIONS
271	Enhancement of thermal stability of structural color by the substituent effect in polyhedral oligomeric silsesquioxane in block copolymers. European Polymer Journal, 2022, 175, 111360.	2.6	O