
Douglas L Miller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7519277/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Impact of Hemorrhagic Shock on Lung Ultrasound–Induced Pulmonary Capillary Hemorrhage. Journal of Ultrasound in Medicine, 2021, 40, 787-794.	1.7	2
2	The Influence of Xylazine and Clonidine on Lung Ultrasound–Induced Pulmonary Capillary Hemorrhage in Spontaneously Hypertensive Rats. Ultrasound in Medicine and Biology, 2021, 47, 2331-2338.	1.5	1
3	Diagnostic Ultrasound Safety Review for Pointâ€ofâ€Care Ultrasound Practitioners. Journal of Ultrasound in Medicine, 2020, 39, 1069-1084.	1.7	33
4	Variation of Diagnostic Ultrasound-Induced Pulmonary Capillary Hemorrhage with Fraction of Inspired Oxygen. Ultrasound in Medicine and Biology, 2020, 46, 1978-1985.	1.5	4
5	Experimental Measurements of Ultrasound Attenuation in Human Chest Wall and Assessment of the Mechanical Index for Lung Ultrasound. Ultrasound in Medicine and Biology, 2020, 46, 1442-1454.	1.5	10
6	Capillary Hemorrhage Induced by Contrast-Enhanced Diagnostic Ultrasound in Rat Intestine. Ultrasound in Medicine and Biology, 2019, 45, 2133-2139.	1.5	10
7	Pulmonary Capillary Hemorrhage Induced by Super Sonic Shear Wave Elastography in Rats. Ultrasound in Medicine and Biology, 2019, 45, 2993-3004.	1.5	5
8	Pulmonary Capillary Hemorrhage Induced by Acoustic Radiation Force Impulse Shear Wave Elastography in Ventilated Rats. Journal of Ultrasound in Medicine, 2019, 38, 2575-2587.	1.7	9
9	Acoustic Fountains and Atomization at Liquid Surfaces Excited by Diagnostic Ultrasound. Ultrasound in Medicine and Biology, 2019, 45, 2162-2173.	1.5	5
10	Hepatocyte Injury Induced by Contrastâ€Enhanced Diagnostic Ultrasound. Journal of Ultrasound in Medicine, 2019, 38, 1855-1864.	1.7	3
11	Influence of Microbubble Size and Pulse Amplitude on Hepatocyte Injury Induced by Contrast-Enhanced Diagnostic Ultrasound. Ultrasound in Medicine and Biology, 2019, 45, 170-176.	1.5	7
12	Pulmonary Capillary Hemorrhage Induced by Different Imaging Modes of Diagnostic Ultrasound. Ultrasound in Medicine and Biology, 2018, 44, 1012-1021.	1.5	27
13	Does Intravenous Infusion Influence Diagnostic Ultrasoundâ€Induced Pulmonary Capillary Hemorrhage?. Journal of Ultrasound in Medicine, 2018, 37, 2021-2028.	1.7	5
14	The Dependence of Glomerular Capillary Hemorrhage Induced by Contrast Enhanced Diagnostic Ultrasound on Microbubble Diameter. Ultrasound in Medicine and Biology, 2018, 44, 613-621.	1.5	10
15	Pulmonary Capillary Hemorrhage Induced by Diagnostic Ultrasound in Ventilated Rats. Ultrasound in Medicine and Biology, 2018, 44, 1810-1817.	1.5	9
16	Ultrasonic Cavitation-Enabled Treatment for Therapy of Hypertrophic Cardiomyopathy: Proof of Principle. Ultrasound in Medicine and Biology, 2018, 44, 1439-1450.	1.5	12
17	Characterization of macrolesions induced by myocardial contrast enabled therapy (MCET). AIP Conference Proceedings, 2017, , .	0.4	0
18	Passive microlesion detection and mapping for treatment of hypertrophic cardiomyopathy. AIP Conference Proceedings, 2017, 1816, .	0.4	1

#	Article	IF	CITATIONS
19	Multiple ultrasound cavitation-enabled treatments for myocardial reduction. Journal of Therapeutic Ultrasound, 2017, 5, 29.	2.2	3
20	A Two-Criterion Model for Microvascular Bio-Effects Induced InÂVivo by Contrast Microbubbles Exposed to Medical Ultrasound. Ultrasound in Medicine and Biology, 2016, 42, 1385-1398.	1.5	11
21	The Influence of Dexmedetomidine on Ultrasound-induced Pulmonary Capillary Hemorrhage in Rats. Ultrasound in Medicine and Biology, 2016, 42, 964-970.	1.5	13
22	Influence of Scan Duration on Pulmonary Capillary Hemorrhage Induced by Diagnostic Ultrasound. Ultrasound in Medicine and Biology, 2016, 42, 1942-1950.	1.5	14
23	Mechanisms for Induction of Pulmonary Capillary Hemorrhage by Diagnostic Ultrasound: Review and Consideration of Acoustical Radiation Surface Pressure. Ultrasound in Medicine and Biology, 2016, 42, 2743-2757.	1.5	24
24	Maturation of Lesions Induced by Myocardial Cavitation-Enabled Therapy. Ultrasound in Medicine and Biology, 2016, 42, 1541-1550.	1.5	5
25	Frequency Dependence of Petechial Hemorrhage and Cardiomyocyte Injury Induced during Myocardial Contrast Echocardiography. Ultrasound in Medicine and Biology, 2016, 42, 1929-1941.	1.5	6
26	Do Anesthetic Techniques Influence the Threshold for Glomerular Capillary Hemorrhage Induced in Rats by Contrastâ€Enhanced Diagnostic Ultrasound?. Journal of Ultrasound in Medicine, 2016, 35, 373-380.	1.7	6
27	Comparison of Thresholds for Pulmonary Capillary Hemorrhage Induced by Pulsed-wave and B-mode Ultrasound. Physics Procedia, 2015, 70, 1087-1090.	1.2	2
28	Quantitative assessment of damage during MCET: a parametric study in a rodent model. Journal of Therapeutic Ultrasound, 2015, 3, 18.	2.2	6
29	Use of Theranostic Strategies in Myocardial Cavitation-Enabled Therapy. Ultrasound in Medicine and Biology, 2015, 41, 1865-1875.	1.5	14
30	Characterization of Macrolesions Induced by Myocardial Cavitation-Enabled Therapy. IEEE Transactions on Biomedical Engineering, 2015, 62, 717-727.	4.2	8
31	Anesthetic Techniques Influence the Induction of Pulmonary Capillary Hemorrhage During Diagnostic Ultrasound Scanning in Rats. Journal of Ultrasound in Medicine, 2015, 34, 289-297.	1.7	20
32	Dependence of Thresholds for Pulmonary Capillary Hemorrhage on Diagnostic Ultrasound Frequency. Ultrasound in Medicine and Biology, 2015, 41, 1640-1650.	1.5	26
33	Pulmonary Capillary Hemorrhage Induced by Fixed-Beam Pulsed Ultrasound. Ultrasound in Medicine and Biology, 2015, 41, 2212-2219.	1.5	13
34	Timing of high-intensity pulses for myocardial cavitation-enabled therapy. Journal of Therapeutic Ultrasound, 2014, 2, 20.	2.2	5
35	Optimization of Ultrasound Parameters of Myocardial Cavitation Microlesions for Therapeutic Application. Ultrasound in Medicine and Biology, 2014, 40, 1228-1236.	1.5	18
36	Characterization of ultrasound-induced pulmonary capillary hemorrhage in rats. Microvascular Research, 2014, 93, 42-45.	2.5	10

#	Article	IF	CITATIONS
37	A System for Investigation of Biological Effects of Diagnostic Ultrasound on Development of Zebrafish Embryos. Zebrafish, 2013, 10, 459-465.	1.1	2
38	Overview of Therapeutic Ultrasound Applications and Safety Considerations. Journal of Ultrasound in Medicine, 2012, 31, 623-634.	1.7	493
39	Induction of Pulmonary Hemorrhage in Rats During Diagnostic Ultrasound. Ultrasound in Medicine and Biology, 2012, 38, 1476-1482.	1.5	35
40	Theoretical microbubble dynamics in a viscoelastic medium at capillary breaching thresholds. Journal of the Acoustical Society of America, 2012, 132, 3770-3777.	1.1	8
41	Histological Observation of Islet Hemorrhage Induced by Diagnostic Ultrasound with Contrast Agent in Rat Pancreas. PLoS ONE, 2011, 6, e21617.	2.5	9
42	Are ECG Premature Complexes Induced by Ultrasonic Cavitation Electrophysiological Responses to Irreversible Cardiomyocyte Injury?. Ultrasound in Medicine and Biology, 2011, 37, 312-320.	1.5	30
43	The influence of octyl β-D-glucopyranoside on cell lysis induced by ultrasonic cavitation. Journal of the Acoustical Society of America, 2011, 130, 3482-3488.	1.1	3
44	In VivoGas Body Efficacy for Glomerular Capillary Hemorrhage Induced by Diagnostic Ultrasound in Rats. IEEE Transactions on Biomedical Engineering, 2010, 57, 167-174.	4.2	11
45	Contrast-Enhanced Diagnostic Ultrasound Causes Renal Tissue Damage in a Porcine Model. Journal of Ultrasound in Medicine, 2010, 29, 1391-1401.	1.7	13
46	Cardiac Arrhythmia and Injury Induced in Rats by Burst and Pulsed Mode Ultrasound With a Gas Body Contrast Agent. Journal of Ultrasound in Medicine, 2009, 28, 1519-1526.	1.7	6
47	An ex vivo Study of the Correlation Between Acoustic Emission and Microvascular Damage. Ultrasound in Medicine and Biology, 2009, 35, 1574-1586.	1.5	32
48	Induction of Apoptosis in Sonoporation and Ultrasonic Gene Transfer. Ultrasound in Medicine and Biology, 2009, 35, 144-154.	1.5	69
49	Glomerular Capillary Hemorrhage Induced in Rats by Diagnostic Ultrasound with Gas–Body Contrast Agent Produces Intratubular Obstruction. Ultrasound in Medicine and Biology, 2009, 35, 869-877.	1.5	23
50	An in vitro study of the correlation between bubble distribution, acoustic emission, and cell damage by contrast ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2009, 56, 589-599.	3.0	9
51	Frequency Dependence of Kidney Injury Induced by Contrast-Aided Diagnostic Ultrasound in Rats. Ultrasound in Medicine and Biology, 2008, 34, 1678-1687.	1.5	35
52	Safety Assurance in Obstetrical Ultrasound. Seminars in Ultrasound, CT and MRI, 2008, 29, 156-164.	1.5	77
53	Bioeffects Considerations for Diagnostic Ultrasound Contrast Agents. Journal of Ultrasound in Medicine, 2008, 27, 611-632.	1.7	213
54	Simulation of diagnostic ultrasound image pulse sequences in cavitation bioeffects research. Journal of the Acoustical Society of America, 2007, 122, 2002-2008.	1.1	12

#	Article	IF	CITATIONS
55	Doppler Mode Pulse Sequences Mitigate Glomerular Capillary Hemorrhage in Contrast-Aided Diagnostic Ultrasound of Rat Kidney. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54, 1802-1810.	3.0	6
56	WFUMB safety symposium on echo-contrast agents: In vitro bioeffects. Ultrasound in Medicine and Biology, 2007, 33, 197-204.	1.5	19
57	An in vivo rat model simulating imaging of human kidney by diagnostic ultrasound with gas-body contrast agent. Ultrasound in Medicine and Biology, 2007, 33, 129-135.	1.5	33
58	Nephron Injury Induced by Diagnostic Ultrasound Imaging at High Mechanical Index with Gas Body Contrast Agent. Ultrasound in Medicine and Biology, 2007, 33, 1336-1344.	1.5	29
59	Evans Blue Staining of Cardiomyocytes Induced by Myocardial Contrast Echocardiography in Rats: Evidence for Necrosis Instead of Apoptosis. Ultrasound in Medicine and Biology, 2007, 33, 1988-1996.	1.5	33
60	Overview of experimental studies of biological effects of medical ultrasound caused by gas body activation and inertial cavitation. Progress in Biophysics and Molecular Biology, 2007, 93, 314-330.	2.9	146
61	Microvascular Permeabilization and Cardiomyocyte Injury Provoked by Myocardial Contrast Echocardiography in a Canine Model. Journal of the American College of Cardiology, 2006, 47, 1464-1468.	2.8	59
62	The potential for enhancement of mouse melanoma metastasis by diagnostic and high-amplitude ultrasound. Ultrasound in Medicine and Biology, 2006, 32, 1097-1101.	1.5	29
63	The relationship of acoustic emission and pulse-repetition frequency in the detection of gas body stability and cell death. Ultrasound in Medicine and Biology, 2006, 32, 439-447.	1.5	9
64	Magnetic resonance imaging of microvascular leakage induced by myocardial contrast echocardiography in rats. Magnetic Resonance Imaging, 2006, 24, 603-609.	1.8	10
65	ULTRASOUND-MEDIATED GENE THERAPY. , 2006, , 69-130.		2
66	The influence of agent delivery mode on cardiomyocyte injury induced by myocardial contrast echocardiography in rats. Ultrasound in Medicine and Biology, 2005, 31, 1257-1263.	1.5	10
67	Histological Characterization of Microlesions Induced by Myocardial Contrast Echocardiography. Echocardiography, 2005, 22, 25-34.	0.9	43
68	Ultrasound-enhanced transfection activity of HPMA-stabilized DNA polyplexes with prolonged plasma circulation. Journal of Controlled Release, 2005, 106, 416-427.	9.9	18
69	Contrast-Aided Diagnostic Ultrasound Does Not Enhance Lung Metastasis in a Mouse Melanoma Tumor Model. Journal of Ultrasound in Medicine, 2005, 24, 349-354.	1.7	12
70	Influence of Contrast Agent Dose and Ultrasound Exposure on Cardiomyocyte Injury Induced by Myocardial Contrast Echocardiography in Rats. Radiology, 2005, 237, 137-143.	7.3	67
71	Theoretical gas body pulsation in relation to empirical gas-body destabilization and to cell membrane damage thresholds. Journal of the Acoustical Society of America, 2004, 116, 3742-3749.	1.1	5
72	Lithotripter Shockwave-Induced Enhancement of Mouse Melanoma Lung Metastasis: Dependence on Cavitation Nucleation. Journal of Endourology, 2004, 18, 925-929.	2.1	18

#	Article	IF	CITATIONS
73	The Effect of Time and of Vasoactive Drugs on Capillary Leakage Induced During Myocardial Contrast Echocardiography. Echocardiography, 2004, 21, 125-132.	0.9	19
74	Impact of myocardial contrast echocardiography on vascular permeability: comparison of three different contrast agents. Ultrasound in Medicine and Biology, 2004, 30, 83-91.	1.5	106
75	Membrane damage thresholds for pulsed or continuous ultrasound in phagocytic cells loaded with contrast agent gas bodies. Ultrasound in Medicine and Biology, 2004, 30, 405-411.	1.5	36
76	Membrane damage thresholds for 1- to 10-MHz pulsed ultrasound exposure of phagocytic cells loaded with contrast agent gas bodies in vitro. Ultrasound in Medicine and Biology, 2004, 30, 973-977.	1.5	27
77	DNA transfer and cell killing in epidermoid cells by diagnostic ultrasound activation of contrast agent gas bodies in vitro. Ultrasound in Medicine and Biology, 2003, 29, 601-607.	1.5	59
78	Tumor growth reduction and DNA transfer by cavitation-enhanced high-intensity focused ultrasound in Vivo. Ultrasound in Medicine and Biology, 2003, 29, 887-893.	1.5	126
79	Impact of myocardial contrast echocardiography on vascular permeability: an in vivo dose response study of delivery mode, pressure amplitude and contrast dose. Ultrasound in Medicine and Biology, 2003, 29, 1341-1349.	1.5	90
80	Diagnostic ultrasound-induced membrane damage in phagocytic cells loaded with contrast agent and its relation to Doppler-mode images. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2002, 49, 1094-1102.	3.0	22
81	Sonoporation: mechanical DNA delivery by ultrasonic cavitation. Somatic Cell and Molecular Genetics, 2002, 27, 115-134.	0.7	317
82	Combined shock-wave and immunogene therapy of mouse melanoma and renal carcinoma tumors. Ultrasound in Medicine and Biology, 2002, 28, 957-964.	1.5	31
83	Lithotripter shock waves with cavitation nucleation agents produce tumor growth reduction and gene transfer in vivo. Ultrasound in Medicine and Biology, 2002, 28, 1343-1348.	1.5	61
84	Lysis and sonoporation of epidermoid and phagocytic monolayer cells by diagnostic ultrasound activation of contrast agent gas bodies. Ultrasound in Medicine and Biology, 2001, 27, 1107-1113.	1.5	57
85	Photodisruptive laser nucleation of ultrasonic cavitation for biomedical applications. Journal of Biomedical Optics, 2001, 6, 351.	2.6	10
86	Diagnostic ultrasound should be performed without upper intensity limits. Medical Physics, 2001, 28, 1-3.	3.0	9
87	Acoustic droplet vaporization for therapeutic and diagnostic applications. Ultrasound in Medicine and Biology, 2000, 26, 1177-1189.	1.5	506
88	The influence of ultrasound frequency and gas-body composition on the contrast agent-mediated enhancement of vascular bioeffects in mouse intestine. Ultrasound in Medicine and Biology, 2000, 26, 307-313.	1.5	78
89	Sonoporation of monolayer cells by diagnostic ultrasound activation of contrast-agent gas bodies. Ultrasound in Medicine and Biology, 2000, 26, 661-667.	1.5	156
90	Cavitation nucleation agents for nonthermal ultrasound therapy. Journal of the Acoustical Society of America, 2000, 107, 3480-3486.	1.1	40

#	Article	IF	CITATIONS
91	Sonoporation of cultured cells in the rotating tube exposure system. Ultrasound in Medicine and Biology, 1999, 25, 143-149.	1.5	109
92	Heating vs. cavitation in the induction of mouse hindlimb paralysis by ultrasound. Ultrasound in Medicine and Biology, 1999, 25, 1145-1150.	1.5	9
93	Ultrasonic enhancement of gene transfection in murine melanoma tumors. Ultrasound in Medicine and Biology, 1999, 25, 1425-1430.	1.5	89
94	Sonoporation of erythrocytes by lithotripter shockwaves in vitro. Ultrasonics, 1998, 36, 947-952.	3.9	35
95	The interaction of ultrasonic heating and cavitation in vascular bioeffects on mouse intestine. Ultrasound in Medicine and Biology, 1998, 24, 123-128.	1.5	53
96	Enhancement of Ultrasonically-Induced Hemolysis by Perfluorocarbon-based Compared to Air-based Echo-Contrast Agents. Ultrasound in Medicine and Biology, 1998, 24, 285-292.	1.5	98
97	Gas-body-based contrast agent enhances vascular bioeffects of 1.09 MHz ultrasound on mouse intestine. Ultrasound in Medicine and Biology, 1998, 24, 1201-1208.	1.5	84
98	Frequency relationships for ultrasonic activation of free microbubbles, encapsulated microbubbles, and gas-filled micropores. Journal of the Acoustical Society of America, 1998, 104, 2498-2505.	1.1	43
99	The relationship of scattered subharmonic, 3.3-MHz fundamental and second harmonic signals to damage of monolayer cells by ultrasonically activated Albunex®. Journal of the Acoustical Society of America, 1998, 103, 1183-1189.	1.1	54
100	Transfection of a reporter plasmid into cultured cells by sonoporation in vitro. Ultrasound in Medicine and Biology, 1997, 23, 953-959.	1.5	468
101	Ultrasonically induced hemolysis at high cell and gas body concentrations in a thin-disc exposure chamber. Ultrasound in Medicine and Biology, 1997, 23, 625-633.	1.5	59
102	A review of in vitro bioeffects of inertial ultrasonic cavitation from a mechanistic perspective. Ultrasound in Medicine and Biology, 1996, 22, 1131-1154.	1.5	476
103	Ultrasound contrast agents nucleate inertial cavitation in vitro. Ultrasound in Medicine and Biology, 1995, 21, 1059-1065.	1.5	167
104	Thresholds for hemorrhages in mouse skin and intestine induced by lithotripter shock waves. Ultrasound in Medicine and Biology, 1995, 21, 249-257.	1.5	62
105	Heating as a mechanism for ultrasonically-induced petechial hemorrhages in mouse intestine. Ultrasound in Medicine and Biology, 1994, 20, 493-503.	1.5	33
106	Frequency dependence of cavitation activity in a rotating tube exposure system compared to the mechanical index. Journal of the Acoustical Society of America, 1993, 93, 3475-3480.	1.1	37
107	Investigation of cavitation in flowing media by lithotripter shock waves both in vitro and in vivo. Ultrasound in Medicine and Biology, 1989, 15, 53-60.	1.5	69
108	Bubble cycling as the explanation of the promotion of ultrasonic cavitation in a rotating tube exposure system. Ultrasound in Medicine and Biology, 1989, 15, 641-648.	1.5	68

#	Article	IF	CITATIONS
109	A review of the ultrasonic bioeffects of microsonation, gas-body activation, and related cavitation-like phenomena. Ultrasound in Medicine and Biology, 1987, 13, 443-470.	1.5	156
110	Microstreaming shear as a mechanism of cell death in Elodea leaves exposed to ultrasound. Ultrasound in Medicine and Biology, 1985, 11, 285-292.	1.5	27
111	Further investigations of ATP release from human erythrocytes exposed to ultrasonically activated gas-filled pores. Ultrasound in Medicine and Biology, 1983, 9, 297-307.	1.5	24
112	The botanical effects of ultrasound: A review. Environmental and Experimental Botany, 1983, 23, 1-27.	4.2	28