Michael A Brook

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7518782/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chelating Silicone Dendrons: Trying to Impact Organisms by Disrupting Ions at Interfaces. Molecules, 2022, 27, 1869.	1.7	5
2	High Refractive Index, Enantiopure Silicones Based on BINOL. Macromolecular Rapid Communications, 2022, , 2200022.	2.0	3
3	Fluoride-initiated Anionic Ring-opening Polymerization: Mono- or Difunctional Polydimethylsiloxanes with Different Termini. Silicon, 2022, 14, 3215-3220.	1.8	3
4	Transparent silphenylene elastomers from highly branched monomers. Polymer Chemistry, 2021, 12, 209-215.	1.9	4
5	PEC-containing siloxane materials by metal-free click-chemistry for ocular drug delivery applications. Journal of Biomaterials Science, Polymer Edition, 2021, 32, 581-594.	1.9	10
6	Reversible Redox Crosslinking of Thiopropylsilicones. Macromolecular Rapid Communications, 2021, 42, 2000375.	2.0	11
7	Synergistic effect of carotenoid and silicone-based additives for photooxidatively stable organic solar cells with enhanced elasticity. Journal of Materials Chemistry C, 2021, 9, 11838-11850.	2.7	7
8	When Attempting Chain Extension, Even Without Solvent, It Is Not Possible to Avoid Chojnowski Metathesis Giving D3. Molecules, 2021, 26, 231.	1.7	3
9	Elastomeric Silicone Sponges for Bleach Delivery. ACS Applied Polymer Materials, 2021, 3, 2045-2053.	2.0	4
10	Simultaneous delivery of several antimicrobial drugs from multi ompartment glycerolâ€silicone membranes. Journal of Applied Polymer Science, 2021, 138, 50780.	1.3	0
11	Spatially Controlled Highly Branched Vinylsilicones. Polymers, 2021, 13, 859.	2.0	4
12	Aminosilicones without Protecting Groups: Using Natural Amines. Industrial & Engineering Chemistry Research, 2021, 60, 3830-3838.	1.8	6
13	Silicone Polymers—Celebrating 80 Years of the Direct Process. Macromolecular Rapid Communications, 2021, 42, e2100048.	2.0	2
14	Synthesis of Siliconized Photosensitizers for Use in 102-Generating Silicone Elastomers: An Electron Paramagnetic Resonance Study. Macromolecules, 2021, 54, 4333-4341.	2.2	8
15	Silylating Disulfides and Thiols with Hydrosilicones Catalyzed by B(C 6 F 5) 3. European Journal of Organic Chemistry, 2021, 2021, 2694-2700.	1.2	5
16	<scp>Azaâ€Michael</scp> silicone cure is accelerated by <scp>βâ€hydroxyalkyl</scp> esters. Journal of Polymer Science, 2021, 59, 1935-1941.	2.0	6
17	Naturally Derived Silicone Surfactants Based on Saccharides and Cysteamine. Molecules, 2021, 26, 4802.	1.7	12
18	Heminâ€Doped, Ionically Crosslinked Silicone Elastomers with Peroxidaseâ€Like Reactivity. Advanced Functional Materials, 2021, 31, 2105453.	7.8	8

#	Article	IF	CITATIONS
19	3D printing of highly reactive silicones using inkjet type droplet ejection and free space droplet merging and reaction. Additive Manufacturing, 2021, 46, 102099.	1.7	4
20	Thermoplastic silicone elastomers from divanillin crosslinkers in a catalyst-free process. Green Chemistry, 2021, 23, 5600-5608.	4.6	10
21	Reliable Condensation Curing Silicone Elastomers with Tailorable Properties. Molecules, 2021, 26, 82.	1.7	8
22	Tunable, Catalyst-Free Preparation of Silicone Gels. Industrial & Engineering Chemistry Research, 2021, 60, 15019-15026.	1.8	5
23	Dissolving used rubber tires. Green Chemistry, 2020, 22, 94-102.	4.6	23
24	Dynamically tuning transient silicone polymer networks with hydrogen bonding. Chemical Communications, 2020, 56, 13555-13558.	2.2	10
25	Facile synthesis of phenylâ€rich functional siloxanes from simple silanes. Journal of Polymer Science, 2020, 58, 3095-3106.	2.0	12
26	Mild Route To Convert SiH Compounds to Their Alkoxy Analogues. Industrial & Engineering Chemistry Research, 2020, 59, 18412-18418.	1.8	3
27	Thermoplastic silicone elastomers based on Gemini ionic crosslinks. Polymer Chemistry, 2020, 11, 7382-7392.	1.9	24
28	Compatibilization of porphyrins for use as high permittivity fillers in low voltage actuating silicone dielectric elastomers. RSC Advances, 2020, 10, 18477-18486.	1.7	19
29	Rapid, catalystâ€free crosslinking of silicones using triazines. Journal of Polymer Science, 2020, 58, 1949-1959.	2.0	3
30	Enzyme Encapsulation in Glycerol–Silicone Membranes for Bioreactions and Biosensors. ACS Applied Polymer Materials, 2020, 2, 1203-1212.	2.0	10
31	Energyâ€Dissipating Polymeric Silicone Surfactants. Macromolecular Rapid Communications, 2020, 41, e2000161.	2.0	13
32	Catalyst Free Silicone Sealants That Cure Underwater. Advanced Functional Materials, 2020, 30, 2000737.	7.8	18
33	Trace water affects tris(pentafluorophenyl)borane catalytic activity in the Piers–Rubinsztajn reaction. Dalton Transactions, 2019, 48, 13599-13606.	1.6	19
34	Purple to Yellow Silicone Elastomers: Design of a Versatile Sensor for Screening Antioxidant Activity. Advanced Materials Technologies, 2019, 4, 1900569.	3.0	7
35	Highâ€Throughput Synthesis and Characterization of Aryl Silicones by Using the Piers–Rubinsztajn Reaction. Chemistry - A European Journal, 2019, 25, 15367-15374. 	1.7	11
36	Controlling silicone networks using dithioacetal crosslinks. Polymer Chemistry, 2019, 10, 219-227.	1.9	14

#	Article	IF	CITATIONS
37	Solid State NMR Study of Boron Coordination Environments in Silicone Boronate (SiBA) Polymers. Macromolecules, 2019, 52, 1055-1064.	2.2	20
38	Singleâ€Step Generation of Flexible, Freeâ€Standing Arrays of Multimode Cylindrical Waveguides. Advanced Engineering Materials, 2019, 21, 1800875.	1.6	3
39	Facile Synthesis of C x (AB) y C x Triblock Silicone Copolymers Utilizing Moisture Mediated Livingâ€End Chain Extension. Macromolecular Chemistry and Physics, 2019, 220, 1800575.	1.1	12
40	Hyperbranched Silicone MDTQ Tack Promoters. Molecules, 2019, 24, 4133.	1.7	8
41	Autoxidation: catalyst-free route to silicone rubbers by crosslinking Si–H functional groups. Green Chemistry, 2019, 21, 6483-6490.	4.6	13
42	Dynamic covalent Schiff-base silicone polymers and elastomers. Polymer, 2019, 160, 282-290.	1.8	53
43	Silicone Structurants for Soybean Oil: Foams, Elastomers, and Candles. ACS Sustainable Chemistry and Engineering, 2019, 7, 1347-1352.	3.2	13
44	New Control Over Silicone Synthesis using SiH Chemistry: The Piers–Rubinsztajn Reaction. Chemistry - A European Journal, 2018, 24, 8458-8469.	1.7	97
45	Bonding and inâ€channel microfluidic functionalization using the huisgen cyclization. Journal of Polymer Science Part A, 2018, 56, 589-597.	2.5	7
46	Versatile Surface Modification of Cellulose Fibers and Cellulose Nanocrystals through Modular Triazinyl Chemistry. Chemistry of Materials, 2018, 30, 2424-2435.	3.2	65
47	Silicone Microemulsion Structures Are Maintained During Polymerization with Reactive Surfactants. Langmuir, 2018, 34, 4374-4381.	1.6	8
48	Multiple modulus silicone elastomers using 3D extrusion printing of low viscosity inks. Additive Manufacturing, 2018, 24, 86-92.	1.7	42
49	Glycerol–Silicone Elastomers as Active Matrices with Controllable Release Profiles. Langmuir, 2018, 34, 11559-11566.	1.6	19
50	Frontispiece: New Control Over Silicone Synthesis using SiH Chemistry: The Piers-Rubinsztajn Reaction. Chemistry - A European Journal, 2018, 24, .	1.7	0
51	Living synthesis of silicone polymers controlled by humidity. European Polymer Journal, 2018, 107, 287-293.	2.6	25
52	Deoxygenation of triglycerides by silylation under exceptionally mild conditions. Green Chemistry, 2018, 20, 3717-3721.	4.6	4
53	Factors influencing agricultural spray deposit structures on hydrophobic surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 553, 288-294.	2.3	12
54	Superwetting comonomers reduce adhesion of E. coli BL21. Chemical Communications, 2017, 53, 3050-3053.	2.2	4

#	Article	IF	CITATIONS
55	Sequential Functionalization of a Natural Crosslinker Leads to Designer Silicone Networks. Chemistry - an Asian Journal, 2017, 12, 1208-1212.	1.7	31
56	The stability of insulin solutions in syringes is improved by ensuring lower molecular weight silicone lubricants are absent. Heliyon, 2017, 3, e00264.	1.4	16
57	3D Nonlinear Inscription of Complex Microcomponents (3D NSCRIPT): Printing Functional Dielectric and Metallodielectric Polymer Structures with Nonlinear Waves of Blue LED Light. Advanced Materials Technologies, 2017, 2, 1600236.	3.0	4
58	Facile synthesis of dendron-branched silicone polymers. Polymer Chemistry, 2017, 8, 2743-2746.	1.9	27
59	Exploiting Lignin: A Green Resource. ACS Symposium Series, 2017, , 91-116.	0.5	4
60	Waveguide Encoded Lattices (WELs): Slim Polymer Films with Panoramic Fields of View (FOV) and Multiple Imaging Functionality. Advanced Functional Materials, 2017, 27, 1702242.	7.8	16
61	Controlling silicone-saccharide interfaces: greening silicones. Green Chemistry, 2017, 19, 4373-4379.	4.6	12
62	A tribute to Alexander Davidson Bain: An NMR pioneer and mentor at McMaster University. Concepts in Magnetic Resonance Part A: Bridging Education and Research, 2016, 45A, e21418.	0.2	0
63	Silicone-modified graphene oxide fillers via the Piers-Rubinsztajn reaction. Journal of Polymer Science Part A, 2016, 54, 2379-2385.	2.5	16
64	Sweet supramolecular elastomers from α,ï‰-(β-cyclodextrin terminated) PDMS. Chemical Communications, 2016, 52, 6681-6684.	2.2	20
65	Nanodomains within bicontinuous silicone/water microemulsions retard TiO 2 nanoparticle aggregation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 511, 232-238.	2.3	3
66	Spread and set silicone–boronic acid elastomers. Polymer Chemistry, 2016, 7, 4458-4466.	1.9	11
67	Poly(ethylene glycol)â€or siliconeâ€modified hyaluronan for contact lens wetting agent applications. Journal of Biomedical Materials Research - Part A, 2015, 103, 2602-2610.	2.1	17
68	Flame retardant lignin-based silicone composites. RSC Advances, 2015, 5, 103907-103914.	1.7	45
69	Utilization of softwood lignin as both crosslinker and reinforcing agent in silicone elastomers. Green Chemistry, 2015, 17, 1811-1819.	4.6	64
70	Amphiphilic thermoset elastomers from metal-free, click crosslinking of PEG-grafted silicone surfactants. Journal of Polymer Science Part A, 2015, 53, 1082-1093.	2.5	14
71	Low molecular weight silicones particularly facilitate human serum albumin denaturation. Colloids and Surfaces B: Biointerfaces, 2015, 128, 586-593.	2.5	11
72	Tunable, antibacterial activity of silicone polyether surfactants. Colloids and Surfaces B: Biointerfaces, 2015, 132, 216-224.	2.5	15

#	Article	IF	CITATIONS
73	Thermally controlled silicone functionalization using selective Huisgen reactions. European Polymer Journal, 2015, 69, 429-437.	2.6	8
74	Foamed lignin–silicone bio-composites by extrusion and then compression molding. Green Chemistry, 2015, 17, 4647-4656.	4.6	34
75	Surface Behavior of Boronic Acid-Terminated Silicones. Langmuir, 2015, 31, 9331-9339.	1.6	8
76	One-step in-mould modification of PDMS surfaces and its application in the fabrication of self-driven microfluidic channels. Lab on A Chip, 2015, 15, 4322-4330.	3.1	32
77	Phototunable Cross-Linked Polysiloxanes. Macromolecules, 2015, 48, 6499-6507.	2.2	44
78	Bulk dispersion of singleâ€walled carbon nanotubes in silicones using diblock copolymers. Journal of Polymer Science Part A, 2015, 53, 265-273.	2.5	5
79	The effect of silicone hydrogel contact lens composition on dexamethasone release. Journal of Biomaterials Applications, 2014, 29, 222-233.	1.2	22
80	Silicone dendrons and dendrimers from orthogonal SiH coupling reactions. Polymer Chemistry, 2014, 5, 6728-6739.	1.9	34
81	Silicone Boronates Reversibly Crosslink Using Lewis Acid– Lewis Base Amine Complexes. Chemistry - A European Journal, 2014, 20, 9349-9356.	1.7	42
82	Printing silicone-based hydrophobic barriers on paper for microfluidic assays using low-cost ink jet printers. Analyst, The, 2014, 139, 6361-6365.	1.7	54
83	Functionalization of Single-Walled Carbon Nanotubes via the Piers–Rubinsztajn Reaction. Macromolecules, 2014, 47, 6527-6530.	2.2	25
84	Reductive Degradation of Lignin and Model Compounds by Hydrosilanes. ACS Sustainable Chemistry and Engineering, 2014, 2, 1983-1991.	3.2	59
85	Thermoplastic Silicone Elastomers through Self-Association of Pendant Coumarin Groups. Macromolecules, 2014, 47, 1656-1663.	2.2	84
86	Facile Functionalization of PDMS Elastomer Surfaces Using Thiol–Ene Click Chemistry. Langmuir, 2013, 29, 12432-12442.	1.6	75
87	Highly efficient divergent synthesis of dendrimers via metalâ€free "click―chemistry. Journal of Polymer Science Part A, 2013, 51, 1272-1277.	2.5	16
88	Sugar complexation to silicone boronic acids. Chemical Communications, 2013, 49, 1392.	2.2	18
89	Rapid, metalâ€ f ree room temperature vulcanization produces silicone elastomers. Journal of Polymer Science Part A, 2013, 51, 644-652.	2.5	27
90	Multifunctional amphiphilic siloxane architectures using sequential, metalâ€free click ligations. Journal of Polymer Science Part A, 2013, 51, 855-864.	2.5	13

#	Article	IF	CITATIONS
91	Targeted Disinfection of E. coli via Bioconjugation to Photoreactive TiO ₂ . Bioconjugate Chemistry, 2013, 24, 448-455.	1.8	14
92	Controlled formation of macroporous or hollow silica particles in non-aqueous silicone dispersions. RSC Advances, 2013, 3, 22229.	1.7	3
93	Polyvinylpyrrolidone Molecular Weight Controls Silica Shell Thickness on Au Nanoparticles with Diglycerylsilane as Precursor. ACS Applied Materials & Interfaces, 2012, 4, 3980-3986.	4.0	14
94	Liquid Triarylamines: The Scope and Limitations of Piers–Rubinsztajn Conditions for Obtaining Triarylamine–Siloxane Hybrid Materials. Journal of Organic Chemistry, 2012, 77, 1663-1674.	1.7	56
95	<i>Lewis</i> Acidâ€Mediated Addition of Amino Acidâ€Substituted <i>α</i> â€Allylsilanes to Aromatic Acetals. Helvetica Chimica Acta, 2012, 95, 2660-2671.	1.0	1
96	Surface etching of silicone elastomers by depolymerization. Canadian Journal of Chemistry, 2012, 90, 153-160.	0.6	24
97	Nearly Monodisperse Silica Microparticles Form in Silicone (Pre)elastomer Mixtures. Langmuir, 2012, 28, 1470-1477.	1.6	4
98	Anhydrous formation of foamed silicone elastomers using the Piers–Rubinsztajn reaction. Polymer, 2012, 53, 3135-3142.	1.8	83
99	Generic, Metal-Free Cross-Linking and Modification of Silicone Elastomers Using Click Ligation. Macromolecules, 2012, 45, 2276-2285.	2.2	42
100	The Use of Piers–Rubinsztajn Conditions for the Placement of Triarylamines Pendant to Silicone Polymers. Macromolecules, 2012, 45, 723-728.	2.2	37
101	An investigation into the effect of amphiphilic siloxane oligomers on dermal fibroblasts. Journal of Biomedical Materials Research - Part A, 2012, 100A, 1919-1927.	2.1	7
102	Morphology ontrolled Synthesis of Poly(oxyethylene)silicone or Alkylsilicone Surfactants with Explicit, Atomically Defined, Branched, Hydrophobic Tails. Chemistry - A European Journal, 2012, 18, 1536-1541.	1.7	24
103	Oriented crystallization of ultra-thin (2 nm) gold nanoplatelets inside a reactive hydrophobic polymeric matrix. Soft Matter, 2011, 7, 722-729.	1.2	10
104	Elastomeric hydrogels by polymerizing silicone microemulsions. Chemical Communications, 2011, 47, 8874.	2.2	7
105	Siloxaneâ^'Triarylamine Hybrids: Discrete Room Temperature Liquid Triarylamines via the Piersâ^'Rubinsztajn Reaction. Organic Letters, 2011, 13, 154-157.	2.4	52
106	Silica Shell/Gold Core Nanoparticles: Correlating Shell Thickness with the Plasmonic Red Shift upon Aggregation. ACS Applied Materials & Interfaces, 2011, 3, 3942-3947.	4.0	53
107	Amphiphilic Silicone Architectures via Anaerobic Thiol–Ene Chemistry. Organic Letters, 2011, 13, 6006-6009.	2.4	35
108	Etching of Silicone Elastomers: Controlled Manipulation of Surface Roughness. ACS Symposium Series, 2010, , 147-155.	0.5	1

#	Article	IF	CITATIONS
109	Silicone foams stabilized by surfactants generated in situ from allyl-functionalized PEG. Soft Matter, 2010, 6, 1229.	1.2	17
110	Biocompatible, hyaluronic acid modified silicone elastomers. Biomaterials, 2010, 31, 3471-3478.	5.7	65
111	Structured hydrophilic domains on silicone elastomers. Polymer Chemistry, 2010, 1, 312-320.	1.9	16
112	Rapid and Efficient Assembly of Functional Silicone Surfaces Protected by PEG: Cell Adhesion to Peptide-Modified PDMS. Journal of Biomaterials Science, Polymer Edition, 2010, 21, 821-842.	1.9	22
113	Testing the functional tolerance of the Piers–Rubinsztajn reaction: a new strategy for functional silicones. Chemical Communications, 2010, 46, 4988.	2.2	80
114	New Synthetic Strategies for Structured Silicones Using B(C6F5)3. Advances in Polymer Science, 2010, , 161-183.	0.4	78
115	Structured metal films on silicone elastomers. Journal of Materials Chemistry, 2010, 20, 8548.	6.7	10
116	Rapid assembly of explicit, functional silicones. Dalton Transactions, 2010, 39, 9369.	1.6	30
117	Polysiloxane Elastomers via Room Temperature, Metal-Free Click Chemistry. Macromolecules, 2009, 42, 9220-9224.	2.2	54
118	Versatile, efficient derivatization of polysiloxanes via click technology. Chemical Communications, 2009, , 1730.	2.2	49
119	Immobilization of TiO2 nanoparticles onto paper modification through bioconjugation. Journal of Materials Chemistry, 2009, 19, 2189.	6.7	30
120	Generic, SN2 reactive silicone surfaces protected by poly(ethylene glycol) linkers: facile routes to new materials. Journal of Materials Chemistry, 2009, 19, 5033.	6.7	8
121	Macroporous silica using a "sticky―Stöber process. Journal of Materials Chemistry, 2009, 19, 1583.	6.7	19
122	Enzymatic Cleavage of Nucleic Acids on Gold Nanoparticles: A Generic Platform for Facile Colorimetric Biosensors. Small, 2008, 4, 810-816.	5.2	136
123	Biomimetic Synthesis of Gold Nanocrystals Using a Reducing Amphiphile. Small, 2008, 4, 1390-1398.	5.2	21
124	Fibrinolytic Poly(dimethyl siloxane) Surfaces. Macromolecular Bioscience, 2008, 8, 863-870.	2.1	41
125	Design of Gold Nanoparticleâ€Based Colorimetric Biosensing Assays. ChemBioChem, 2008, 9, 2363-2371	1.3	701
126	Using a drug to structure its release matrix and release profile. International Journal of Pharmaceutics, 2008, 358, 121-127.	2.6	15

#	Article	IF	CITATIONS
127	Hydrolytically stable linkers for silicone carbohydrates derived from hydrodiisopropylsilanes. Silicon Chemistry, 2008, 3, 327-334.	0.8	5
128	DNA Aptamer Folding on Gold Nanoparticles:  From Colloid Chemistry to Biosensors. Journal of the American Chemical Society, 2008, 130, 3610-3618.	6.6	352
129	Rapid Assembly of Complex 3D Siloxane Architectures. Journal of the American Chemical Society, 2008, 130, 32-33.	6.6	127
130	Water-in-Silicone Oil Emulsion Stabilizing Surfactants Formed From Native Albumin and α,ï‰-Triethoxysilylpropyl-Polydimethylsiloxane. Biomacromolecules, 2008, 9, 2153-2161.	2.6	21
131	Au–carbon nanotube composites from self-reduction of Au3+ upon poly(ethylene imine) functionalized SWNT thin films. Journal of Materials Chemistry, 2008, 18, 1694.	6.7	21
132	Photoflocculation of TiO ₂ Microgel Mixed Suspensions. Langmuir, 2008, 24, 9341-9343.	1.6	5
133	Simple Strategies to Manipulate Hydrophilic Domains in Silicones. , 2008, , 29-38.		8
134	Simple and rapid colorimetric enzyme sensing assays using non-crosslinking gold nanoparticle aggregation. Chemical Communications, 2007, , 3729.	2.2	170
135	Biotinylation of TiO2Nanoparticles and Their Conjugation with Streptavidin. Langmuir, 2007, 23, 5630-5637.	1.6	59
136	Delivery of Both Active Enzyme and Bleach from Water-in-Silicone Oil (D4) Emulsions. Langmuir, 2007, 23, 3620-3625.	1.6	10
137	Non-destructive horseradish peroxidase immobilization in porous silica nanoparticles. Journal of Materials Chemistry, 2007, 17, 4854.	6.7	31
138	Pretreatment of Liquid Silicone Rubbers to Remove Volatile Siloxanes. Industrial & Engineering Chemistry Research, 2007, 46, 8796-8805.	1.8	25
139	Competitive Substitution Reactions at Extracoordinate Silicon during Asymmetric Hydrosilylation. Organometallics, 2007, 26, 945-951.	1.1	10
140	Simple and Rapid Colorimetric Biosensors Based on DNA Aptamer and Noncrosslinking Gold Nanoparticle Aggregation. ChemBioChem, 2007, 8, 727-731.	1.3	208
141	Proteins at Silicone Interfaces. ACS Symposium Series, 2007, , 256-266.	0.5	1
142	Hydrosilylation of ketones catalyzed by C2-symmetric proline-derived complexes. Canadian Journal of Chemistry, 2006, 84, 1416-1425.	0.6	20
143	Generic Bioaffinity Silicone Surfaces. Bioconjugate Chemistry, 2006, 17, 21-28.	1.8	66
144	Comments on Total Platinum Concentration and Platinum Oxidation States in Body Fluids, Tissue, and Explants from Women Exposed to Silicone and Saline Breast Implants by ICâ^'ICPMS. Analytical Chemistry, 2006, 78, 5609-5611.	3.2	9

#	Article	IF	CITATIONS
145	Development of Macroporous Titania Monoliths by a Biocompatible Method. Part 2:Â Enzyme Entrapment Studies. Chemistry of Materials, 2006, 18, 5336-5342.	3.2	22
146	Platinum in silicone breast implantsâ~†. Biomaterials, 2006, 27, 3274-3286.	5.7	79
147	Mass transfer of dilute 1,2-dimethoxyethane aqueous solutions during pervaporation process. Journal of Applied Polymer Science, 2006, 100, 2075-2084.	1.3	2
148	Macroporous Silica Monoliths Derived from Glyceroxysilanes: Controlling Gel Formation and Pore Structure. Macromolecular Symposia, 2005, 226, 253-262.	0.4	5
149	Highly active, lipase silicone elastomers. Biomaterials, 2005, 26, 1653-1664.	5.7	18
150	Protein repellant silicone surfaces by covalent immobilization of poly(ethylene oxide). Biomaterials, 2005, 26, 2391-2399.	5.7	216
151	Immobilization of heparin on a silicone surface through a heterobifunctional PEG spacer. Biomaterials, 2005, 26, 7418-7424.	5.7	143
152	Removal of 1,2-dichloroethane from aqueous solutions with novel composite polydimethylsiloxane pervaporation membranes. Journal of Applied Polymer Science, 2005, 98, 1477-1491.	1.3	8
153	Surface properties of PEO–silicone composites: reducing protein adsorption. Journal of Biomaterials Science, Polymer Edition, 2005, 16, 531-548.	1.9	77
154	Reduced shrinkage of sol–gel derived silicas using sugar-based silsesquioxane precursors. Journal of Materials Chemistry, 2005, 15, 3132.	6.7	30
155	Proteins Entrapped in Silica Monoliths Prepared from Glyceroxysilanes. Journal of Sol-Gel Science and Technology, 2004, 31, 343-348.	1.1	52
156	Pervaporation of 1,2-dimethoxyethane from aqueous solutions by crosslinked oligosilylstyrene-poly(dimethylsiloxane) composite membranes. Journal of Applied Polymer Science, 2004, 92, 2284-2294.	1.3	3
157	Effect of low flow rate on pervaporation of 1,2-dichloroethane with novel polydimethylsiloxane composite membranes. Journal of Membrane Science, 2004, 231, 71-79.	4.1	29
158	Silicone elastomers for reduced protein adsorption. Biomaterials, 2004, 25, 2273-2282.	5.7	163
159	Sugar-modified silanes: precursors for silica monoliths. Journal of Materials Chemistry, 2004, 14, 1469-1479.	6.7	122
160	Controlling silica surfaces using responsive coupling agents. Colloid and Polymer Science, 2003, 281, 391-400.	1.0	7
161	Highly activated, silicone entrapped, lipase. Chemical Communications, 2003, , 2314.	2.2	15
162	Exploiting Favorable Silicone—Protein Interactions: Stabilization against Denaturation at Oil—Water Interfaces. ACS Symposium Series, 2003, , 212-221.	0.5	2

#	Article	IF	CITATIONS
163	Stabilization of α-Chymotrypsin and Lysozyme Entrapped in Water-in-Silicone Oil Emulsions. Langmuir, 2002, 18, 8982-8987.	1.6	42
164	Oxidizable coupling agents: Introduction of surface functionality. Journal of Adhesion, 2002, 78, 521-541.	1.8	1
165	Amino acid and peptide chemistry on silicones. Silicon Chemistry, 2002, 1, 215-222.	0.8	6
166	Hydrophobization of wood surfaces: covalent grafting of silicone polymers. Wood Science and Technology, 2001, 35, 269-282.	1.4	93
167	Synthesis of allylsilane-containing amino acids via the Claisen rearrangement. Tetrahedron Letters, 2001, 42, 191-193.	0.7	14
168	Analysis of the NMR spectra of some dimethylsilanes. Magnetic Resonance in Chemistry, 2000, 38, 894-895.	1.1	3
169	Alkoxyallylsilanes: Functional Protecting Groups. Tetrahedron, 2000, 56, 1617-1622.	1.0	7
170	Proteinâ^'Silicone Synergism at Liquid/Liquid Interfaces. Langmuir, 2000, 16, 4589-4593.	1.6	23
171	The molecular dynamics and reactivity of tris(inden-1-yl)silane: an NMR spectroscopic and X-ray crystallographic study â€. Perkin Transactions II RSC, 2000, , 611-618.	1.1	8
172	Probing the Effect of Organic and Organometallic Functionalization on [1,5]-Silicon Shifts in Indenylsilanes. Organometallics, 2000, 19, 590-601.	1.1	21
173	Stereoselective reduction of ketones by histidine-alkoxysilane complexes: The role of imidazole in nucleophilic substitution at silicon. Tetrahedron Letters, 1999, 40, 3507-3510.	0.7	36
174	The photolytic and hydrolytic lability of sisyl (Si(SiMe3)3) ethers, an alcohol protecting group. Tetrahedron, 1999, 55, 10027-10040.	1.0	45
175	Stereoselective reduction of ketones using extracoordinate silicon: C2-symmetric ligands. Inorganica Chimica Acta, 1999, 296, 208-221.	1.2	30
176	Adjuvancy effect of different types of silicone gel. , 1999, 46, 132-133.		2
177	Protein-Silicone Interactions. Advanced Materials, 1999, 11, 257-259.	11.1	59
178	Metal Cluster Stabilized Fluorenyl, Indenyl, and Cyclopentadienyl Antiaromatic Cations:  An NMR and X-ray Crystallographic Study. Organometallics, 1999, 18, 3372-3382.	1.1	31
179	Hydrovinylsilanes in sequential reactions: A route to graft copolymers [1]. Heteroatom Chemistry, 1998, 9, 241-251.	0.4	2
180	Polymer-grafted starch microparticles for oral and nasal immunization. Immunology and Cell Biology, 1998, 76, 256-262.	1.0	38

#	Article	IF	CITATIONS
181	Metal-Mediated Allyl Transfers in (Alkynylallylsilane)Co2(CO)6 Complexes:  A Synthetic and Structural Study. Organometallics, 1998, 17, 4992-4996.	1.1	12
182	Siliconeâ´'Protein Films:Â Establishing the Strength of the Proteinâ´'Silicone Interaction. Langmuir, 1998, 14, 1892-1898.	1.6	12
183	The Fluxional Character of (î·5-C5H5)Fe(CO)2(î·1-C9H7):Â Evidence for the [4 + 2] Cycloaddition of a Metal-Substituted Isoindene with Tetracyanoethylene. Organometallics, 1997, 16, 5563-5568.	1.1	27
184	Siliconeâ^'Protein Interaction at the Interface between a Functional Silicone and a Protein/Starch Microparticle. Langmuir, 1997, 13, 6279-6286.	1.6	16
185	The sisyl (tris(trimethylsilyl)silyl) group: A fluoride resistant, photolabile alcohol protecting group. Tetrahedron Letters, 1997, 38, 6997-7000.	0.7	45
186	Radical Reactivity of Hydrovinylsilanes:Â Homooligomers1. Macromolecules, 1996, 29, 4549-4555.	2.2	17
187	Multidimensional NMR Study of Tris(indenyl)methylsilane:  Molecular Dynamics Mapped onto a Hypercube. Organometallics, 1996, 15, 5645-5652.	1.1	25
188	A characterization of pdms pervaporation membranes for the removal of trace organic from water. Korean Journal of Chemical Engineering, 1996, 13, 482-488.	1.2	24
189	Competitive acylation of arylstyrylsilanes: Controlling silanucleophile reactivity. Tetrahedron, 1996, 52, 861-868.	1.0	7
190	Hydrosilane cleavage reactions accelerated by tartaric acid and dimethyl sulphoxide. Journal of Organometallic Chemistry, 1996, 521, 65-74.	0.8	11
191	The Chemistry of Silenes. Advances in Organometallic Chemistry, 1996, , 71-158.	0.5	246
192	Sterically stabilized silica colloids: Radical grafting of poly(methyl methacrylate) and hydrosilylative grafting of silicones to functionalized silica. Polymers for Advanced Technologies, 1995, 6, 335-344.	1.6	24
193	β-Trichlorosilylstyrene oligomers. Canadian Journal of Chemistry, 1995, 73, 1794-1802.	0.6	2
194	Electrophilic addition to styrylsilanes: sequential carbon-carbon bond forming reactions. Inorganica Chimica Acta, 1994, 220, 145-154.	1.2	3
195	Substitution reactions at silicon under strongly acidic conditions: Ligand metathesis between methyltrichlorosilane and octamethylcyclotetrasiloxane. Heteroatom Chemistry, 1994, 5, 275-285.	0.4	1
196	Proton addition to silylstyrenes: Overcoming the predilection for protiodesilylation. Tetrahedron, 1994, 50, 11379-11390.	1.0	9
197	The .betaeffect with vinyl cations: kinetic study of the protiodemetalation of silyl-, germyl-, and stannylalkynes. Organometallics, 1993, 12, 2332-2338.	1.1	42
198	Silicon-functionalized styrene polymers. Macromolecules, 1993, 26, 2624-2627.	2.2	7

#	Article	IF	CITATIONS
199	Balancing Leaving Group Ability and the β-Effect: Exploring the Synthetic Utility of Chlorosilyl Groups. Synlett, 1993, 1993, 97-104.	1.0	21
200	Stabilization energies for α- and β-silyl substituents on vinyl cations determined using mass spectrometric techniques. Journal of the Chemical Society Chemical Communications, 1992, , 360-362.	2.0	21
201	The .betaeffect: changing the ligands on silicon. Journal of Organic Chemistry, 1990, 55, 3609-3616.	1.7	60
202	Relative magnitude of the .betaeffect of silyl, germyl, and stannyl groups in the stabilization of vinyl cations. Organometallics, 1990, 9, 2873-2874.	1.1	32
203	A novel glycol-silicone polymer. Journal of Polymer Science, Part C: Polymer Letters, 1989, 27, 229-234.	0.7	4
204	Oligo(trichlorosilyl)styrenes: highly functionalized silicone precursors. Macromolecules, 1989, 22, 3814-3816.	2.2	8
205	An examination of the \hat{l}^2 -effect in an addition reaction with different ligands on silion. Journal of the Chemical Society Chemical Communications, 1989, , 957-958.	2.0	20
206	The Activation of Imines to Nucleophilic Attack by Grignard Reagents. Synthetic Communications, 1988, 18, 893-898.	1.1	26
207	Reversed Stereochemical Course of theMichael Addition of Cyclohexanone to ?-Nitrostyrenes by Using 1-(Trimethylsiloxy)cyclohexene/Dichloro(diisopropoxy)titanium. Preliminary Communication. Helvetica Chimica Acta, 1985, 68, 319-324.	1.0	59
208	A Simple Procedure for the Esterification of Carboxylic Acids. Synthesis, 1983, 1983, 201-203.	1.2	113
209	Permeability of Silicone-Water Interfaces in Water-in-Oil Emulsions. , 0, , 606-611.		2
210	A simple route to photodynamic chlorin e6 amide derivatives. Journal of Porphyrins and Phthalocyanines, 0, , A-I.	0.4	2
211	Naked alpaca wool works better with silicone elastomers. Green Chemistry, 0, , .	4.6	3
212	Naturally occurring antioxidants for photooxidatively stable flexible organic solar cells. , 0, , .		0
213	Permeability of Silicone-Water Interfaces in Water-in-Oil Emulsions. , 0, , 606-611.		0