List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7518148/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. EMBO Journal, 1997, 16, 1909-1920.	3.5	860
2	Regulation of elongation factor 2 kinase by p90RSK1 and p70 S6 kinase. EMBO Journal, 2001, 20, 4370-4379.	3.5	675
3	The mTOR Pathway in the Control of Protein Synthesis. Physiology, 2006, 21, 362-369.	1.6	549
4	Signalling to translation: how signal transduction pathways control the protein synthetic machinery. Biochemical Journal, 2007, 403, 217-234.	1.7	443
5	Activation of AMP-Activated Protein Kinase Leads to the Phosphorylation of Elongation Factor 2 and an Inhibition of Protein Synthesis. Current Biology, 2002, 12, 1419-1423.	1.8	415
6	Regulation of peptide-chain elongation in mammalian cells. FEBS Journal, 2002, 269, 5360-5368.	0.2	404
7	The eEF2 Kinase Confers Resistance to Nutrient Deprivation by Blocking Translation Elongation. Cell, 2013, 153, 1064-1079.	13.5	348
8	eIF2 and the control of cell physiology. Seminars in Cell and Developmental Biology, 2005, 16, 3-12.	2.3	331
9	Regulation of mammalian translation factors by nutrients. FEBS Journal, 2002, 269, 5338-5349.	0.2	327
10	Amino acid availability regulates p70 S6 kinase and multiple translation factors. Biochemical Journal, 1998, 334, 261-267.	1.7	322
11	Screen for Chemical Modulators of Autophagy Reveals Novel Therapeutic Inhibitors of mTORC1 Signaling. PLoS ONE, 2009, 4, e7124.	1.1	313
12	The Tuberous Sclerosis Protein TSC2 Is Not Required for the Regulation of the Mammalian Target of Rapamycin by Amino Acids and Certain Cellular Stresses. Journal of Biological Chemistry, 2005, 280, 18717-18727.	1.6	312
13	Stimulation of the AMP-activated Protein Kinase Leads to Activation of Eukaryotic Elongation Factor 2 Kinase and to Its Phosphorylation at a Novel Site, Serine 398. Journal of Biological Chemistry, 2004, 279, 12220-12231.	1.6	306
14	The kinase DYRK phosphorylates protein-synthesis initiation factor eIF2BÉ› at Ser539 and the microtubule-associated protein tau at Thr212: potential role for DYRK as a glycogen synthase kinase 3-priming kinase. Biochemical Journal, 2001, 355, 609-615.	1.7	299
15	Activation of AMP-activated Protein Kinase Inhibits Protein Synthesis Associated with Hypertrophy in the Cardiac Myocyte. Journal of Biological Chemistry, 2004, 279, 32771-32779.	1.6	294
16	Regulation of targets of mTOR (mammalian target of rapamycin) signalling by intracellular amino acid availability. Biochemical Journal, 2003, 372, 555-566.	1.7	279
17	The Phosphorylation of Eukaryotic Initiation Factor elF4E in Response to Phorbol Esters, Cell Stresses, and Cytokines Is Mediated by Distinct MAP Kinase Pathways. Journal of Biological Chemistry, 1998, 273, 9373-9377.	1.6	277
18	Regulation of eukaryotic initiation factor elF2B: glycogen synthase kinase-3 phosphorylates a conserved serine which undergoes dephosphorylation in response to insulin. FEBS Letters, 1998, 421, 125-130.	1.3	264

#	Article	IF	CITATIONS
19	Does phosphorylation of the cap-binding protein eIF4E play a role in translation initiation?. FEBS Journal, 2002, 269, 5350-5359.	0.2	263
20	Translation matters: protein synthesis defects in inherited disease. Nature Reviews Genetics, 2007, 8, 711-723.	7.7	246
21	A Novel mTOR-Regulated Phosphorylation Site in Elongation Factor 2 Kinase Modulates the Activity of the Kinase and Its Binding to Calmodulin. Molecular and Cellular Biology, 2004, 24, 2986-2997.	1.1	234
22	mTOR inhibitors in cancer therapy. F1000Research, 2016, 5, 2078.	0.8	228
23	Regulation of Protein Kinase B and Glycogen Synthase Kinase-3 by Insulin and β-Adrenergic Agonists in Rat Epididymal Fat Cells. Journal of Biological Chemistry, 1997, 272, 7713-7719.	1.6	224
24	Phosphorylation of Eukaryotic Initiation Factor 4E Markedly Reduces Its Affinity for Capped mRNA. Journal of Biological Chemistry, 2002, 277, 3303-3309.	1.6	224
25	mTORC1 signaling controls multiple steps in ribosome biogenesis. Seminars in Cell and Developmental Biology, 2014, 36, 113-120.	2.3	216
26	PKR: a new name and new roles. Trends in Biochemical Sciences, 1995, 20, 241-246.	3.7	214
27	PRAS40 Is a Target for Mammalian Target of Rapamycin Complex 1 and Is Required for Signaling Downstream of This Complex*. Journal of Biological Chemistry, 2007, 282, 24514-24524.	1.6	212
28	Distinct Signaling Events Downstream of mTOR Cooperate To Mediate the Effects of Amino Acids and Insulin on Initiation Factor 4E-Binding Proteins. Molecular and Cellular Biology, 2005, 25, 2558-2572.	1.1	194
29	p70 S6 kinase: an enigma with variations. Trends in Biochemical Sciences, 1996, 21, 181-185.	3.7	193
30	The Purification and Properties of Rabbit Skeletal Muscle Glycogen Synthase. FEBS Journal, 1976, 68, 21-30.	0.2	192
31	mTOR-mediated regulation of translation factors by amino acids. Biochemical and Biophysical Research Communications, 2004, 313, 429-436.	1.0	192
32	Comparative analysis of the regulation of the interferoninducible protein kinase PKR by Epstein - Barr virus RNAs EBER-1 and EBER-2 and adenovirus VA, RNA. Nucleic Acids Research, 1993, 21, 4483-4490.	6.5	189
33	The Mitogen-Activated Protein Kinase Signal-Integrating Kinase Mnk2 Is a Eukaryotic Initiation Factor 4E Kinase with High Levels of Basal Activity in Mammalian Cells. Molecular and Cellular Biology, 2001, 21, 743-754.	1.1	188
34	The Mnks Are Novel Components in the Control of TNFα Biosynthesis and Phosphorylate and Regulate hnRNP A1. Immunity, 2005, 23, 177-189.	6.6	188
35	Nutrient control of TORC1, a cell-cycle regulator. Trends in Cell Biology, 2009, 19, 260-267.	3.6	186
36	When translation meets transformation: the mTOR story. Oncogene, 2006, 25, 6423-6435.	2.6	176

#	Article	IF	CITATIONS
37	Protein Phosphorylation in Translational Control. Current Topics in Cellular Regulation, 1992, 32, 243-369.	9.6	176
38	Regulation of cyclin D1 expression by mTORC1 signaling requires eukaryotic initiation factor 4E-binding protein 1. Oncogene, 2008, 27, 1106-1113.	2.6	171
39	Regulation of elongation factor-2 by multisite phosphorylation. FEBS Journal, 1993, 213, 689-699.	0.2	170
40	The Extracellular Signal-regulated Kinase Pathway Regulates the Phosphorylation of 4E-BP1 at Multiple Sites. Journal of Biological Chemistry, 2002, 277, 11591-11596.	1.6	166
41	mTOR's role in ageing: protein synthesis or autophagy?. Aging, 2009, 1, 586-597.	1.4	154
42	Cellular stresses profoundly inhibit protein synthesis and modulate the states of phosphorylation of multiple translation factors. FEBS Journal, 2002, 269, 3076-3085.	0.2	149
43	elF2B-Related Disorders: Antenatal Onset and Involvement of Multiple Organs. American Journal of Human Genetics, 2003, 73, 1199-1207.	2.6	149
44	Ras, PI3-kinase and mTOR signaling in cardiac hypertrophy. Cardiovascular Research, 2004, 63, 403-413.	1.8	149
45	The Mnks: MAP kinase-interacting kinases (MAP kinase signal-integrating kinases). Frontiers in Bioscience - Landmark, 2008, Volume, 5359.	3.0	149
46	Eukaryotic elongation factor 2 kinase, an unusual enzyme with multiple roles. Advances in Biological Regulation, 2014, 55, 15-27.	1.4	149
47	Serine 209, Not Serine 53, Is the Major Site of Phosphorylation in Initiation Factor eIF-4E in Serum-treated Chinese Hamster Ovary Cells. Journal of Biological Chemistry, 1995, 270, 21684-21688.	1.6	139
48	GSK3: a SHAGGY frog story. Trends in Cell Biology, 1996, 6, 274-279.	3.6	133
49	Guanine nucleotides, protein phosphorylation and the control of translation. Trends in Biochemical Sciences, 1986, 11, 73-77.	3.7	132
50	Re-evaluating the Roles of Proposed Modulators of Mammalian Target of Rapamycin Complex 1 (mTORC1) Signaling. Journal of Biological Chemistry, 2008, 283, 30482-30492.	1.6	132
51	Targeting Mnks for Cancer Therapy. Oncotarget, 2012, 3, 118-131.	0.8	132
52	Caspase Cleavage of Initiation Factor 4E-Binding Protein 1 Yields a Dominant Inhibitor of Cap-Dependent Translation and Reveals a Novel Regulatory Motif. Molecular and Cellular Biology, 2002, 22, 1674-1683.	1.1	129
53	Structure and regulation of eukaryotic initiation factor elF-2. Sequence of the site in the alpha subunit phosphorylated by the haem-controlled repressor and by the double-stranded RNA-activated inhibitor. FEBS Journal, 1987, 166, 357-363.	0.2	127
54	ABC50 Interacts with Eukaryotic Initiation Factor 2 and Associates with the Ribosome in an ATP-dependent Manner. Journal of Biological Chemistry, 2000, 275, 34131-34139.	1.6	124

#	Article	IF	CITATIONS
55	Ras/Erk Signaling Is Essential for Activation of Protein Synthesis by Gq Protein-Coupled Receptor Agonists in Adult Cardiomyocytes. Circulation Research, 2002, 91, 821-829.	2.0	124
56	Two-Stage Translational Control of Dentate Gyrus LTP Consolidation Is Mediated by Sustained BDNF-TrkB Signaling to MNK. Cell Reports, 2014, 9, 1430-1445.	2.9	122
57	Amino acids and mTOR signalling in anabolic function. Biochemical Society Transactions, 2007, 35, 1187-1190.	1.6	118
58	Cross-talk between the ERK and p70 S6 Kinase (S6K) Signaling Pathways. Journal of Biological Chemistry, 2001, 276, 32670-32677.	1.6	116
59	Target of Rapamycin (TOR)-signaling and RAIP Motifs Play Distinct Roles in the Mammalian TOR-dependent Phosphorylation of Initiation Factor 4E-binding Protein 1. Journal of Biological Chemistry, 2003, 278, 40717-40722.	1.6	116
60	The Phosphorylation of Rabbit Skeletal Muscle Glycogen Synthase by Glycogen Synthase Kinase-2 and Adenosine-3': 5'-Monophosphate-Dependent Protein Kinase. FEBS Journal, 1976, 68, 31-44.	0.2	114
61	DNA-damaging agents cause inactivation of translational regulators linked to mTOR signalling. Oncogene, 2000, 19, 3021-3031.	2.6	114
62	mTORC1 signaling: what we still don't know. Journal of Molecular Cell Biology, 2011, 3, 206-220.	1.5	114
63	Mutations Linked to Leukoencephalopathy with Vanishing White Matter Impair the Function of the Eukaryotic Initiation Factor 2B Complex in Diverse Ways. Molecular and Cellular Biology, 2004, 24, 3295-3306.	1.1	113
64	Intracellular Sensing of Amino Acids in Xenopus laevis Oocytes Stimulates p70 S6 Kinase in a Target of Rapamycin-dependent Manner. Journal of Biological Chemistry, 2002, 277, 9952-9957.	1.6	112
65	mTORC1 signalling and mRNA translation. Biochemical Society Transactions, 2009, 37, 227-231.	1.6	112
66	Eukaryotic initiation factor 2B: identification of multiple phosphorylation sites in the epsilon-subunit and their functions in vivo. EMBO Journal, 2001, 20, 4349-4359.	3.5	110
67	Activation of protein synthesis in cardiomyocytes by the hypertrophic agent phenylephrine requires the activation of ERK and involves phosphorylation of tuberous sclerosis complex 2 (TSC2). Biochemical Journal, 2005, 388, 973-984.	1.7	110
68	Identification of the phosphorylation sites in elongation factor-2 from rabbit reticulocytes. FEBS Letters, 1991, 282, 253-258.	1.3	109
69	Amino acid sequences at the two sites on glycogen synthetase phosphorylated by cyclic AMP-dependent protein kinase and their dephosphorylation by protein phosphatase-III. FEBS Letters, 1977, 80, 435-442.	1.3	108
70	Activation of mRNA translation in rat cardiac myocytes by insulin involves multiple rapamycin-sensitive steps. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 278, H1056-H1068.	1.5	103
71	Mnks, elF4E phosphorylation and cancer. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 766-773.	0.9	102
72	The guanine nucleotide-exchange factor, eIF-2B. Biochimie, 1994, 76, 748-760.	1.3	101

#	Article	IF	CITATIONS
73	Distinct Signalling Pathways Mediate Insulin and Phorbol Ester-stimulated Eukaryotic Initiation Factor 4F Assembly and Protein Synthesis in HEK 293 Cells. Journal of Biological Chemistry, 2000, 275, 11249-11256.	1.6	101
74	Changes in the phosphorylation of initiation factor eIF-2α, elongation factor eEF-2 and p70 S6 kinase after transient focal cerebral ischaemia in mice. Journal of Neurochemistry, 2001, 78, 779-787.	2.1	100
75	Eukaryotic translation initiation factor 5 (elF5) acts as a classical GTPase-activator protein. Current Biology, 2001, 11, 55-59.	1.8	100
76	The C Terminus of Initiation Factor 4E-Binding Protein 1 Contains Multiple Regulatory Features That Influence Its Function and Phosphorylation. Molecular and Cellular Biology, 2003, 23, 1546-1557.	1.1	100
77	The N and C Termini of the Splice Variants of the Human Mitogen-Activated Protein Kinase-Interacting Kinase Mnk2 Determine Activity and Localization. Molecular and Cellular Biology, 2003, 23, 5692-5705.	1.1	96
78	Molecular mechanisms in the control of translation by hormones and growth factors. Biochimica Et Biophysica Acta - Molecular Cell Research, 1994, 1220, 147-162.	1.9	95
79	Both rapamycin-sensitive and -insensitive pathways are involved in the phosphorylation of the initiation factor-4E-binding protein (4E-BP1) in response to insulin in rat epididymal fat-cells. Biochemical Journal, 1996, 316, 447-453.	1.7	95
80	Activation of translation initiation factor eIF2B by insulin requires phosphatidyl inositol 3-kinase. FEBS Letters, 1997, 410, 418-422.	1.3	93
81	The rapid activation of protein synthesis by growth hormone requires signaling through mTOR. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E1647-E1655.	1.8	93
82	ABC50 Promotes Translation Initiation in Mammalian Cells. Journal of Biological Chemistry, 2009, 284, 24061-24073.	1.6	91
83	cdc2–cyclin B regulates eEF2 kinase activity in a cell cycle- and amino acid-dependent manner. EMBO Journal, 2008, 27, 1005-1016.	3.5	89
84	Phosphorylation and Signal Transduction Pathways in Translational Control. Cold Spring Harbor Perspectives in Biology, 2019, 11, a033050.	2.3	89
85	mTOR signaling regulates the processing of pre-rRNA in human cells. Nucleic Acids Research, 2012, 40, 2527-2539.	6.5	88
86	Analysis of mTOR signaling by the small G-proteins, Rheb and RhebL1. FEBS Letters, 2005, 579, 4763-4768.	1.3	87
87	Rapid induction of apoptosis mediated by peptides that bind initiation factor eIF4E. Current Biology, 2000, 10, 793-796.	1.8	86
88	Eukaryotic Elongation Factor 2 Kinase Activity Is Controlled by Multiple Inputs from Oncogenic Signaling. Molecular and Cellular Biology, 2014, 34, 4088-4103.	1.1	84
89	Tuning Specific Translation in Cancer Metastasis and Synaptic Memory: Control at the MNK–eIF4E Axis. Trends in Biochemical Sciences, 2016, 41, 847-858.	3.7	84
90	T-cell Activation Leads to Rapid Stimulation of Translation Initiation Factor eIF2B and Inactivation of Glycogen Synthase Kinase-3. Journal of Biological Chemistry, 1996, 271, 11410-11413.	1.6	83

#	Article	IF	CITATIONS
91	Exercise rapidly increases eukaryotic elongation factor 2 phosphorylation in skeletal muscle of men. Journal of Physiology, 2005, 569, 223-228.	1.3	83
92	MAP Kinase-Interacting Kinases—Emerging Targets against Cancer. Chemistry and Biology, 2014, 21, 441-452.	6.2	83
93	Eukaryotic elongation factor 2 kinase as a drug target in cancer, and in cardiovascular and neurodegenerative diseases. Acta Pharmacologica Sinica, 2016, 37, 285-294.	2.8	82
94	Regulation of Eukaryotic Initiation Factor elF2B. Progress in Molecular and Subcellular Biology, 2001, 26, 95-114.	0.9	82
95	Glucose Stimulates the Activity of the Guanine Nucleotide-exchange Factor eIF-2B in Isolated Rat Islets of Langerhans. Journal of Biological Chemistry, 1996, 271, 2121-2125.	1.6	81
96	Eukaryotic initiation factor 2B (elF2B). International Journal of Biochemistry and Cell Biology, 1997, 29, 1127-1131.	1.2	81
97	Stable isotope-labelling analysis of the impact of inhibition of the mammalian target of rapamycin on protein synthesis. Biochemical Journal, 2012, 444, 141-151.	1.7	79
98	Consolidation and translation regulation: Figure 1 Learning and Memory, 2012, 19, 410-422.	0.5	77
99	Crosstalk between mTOR complexes. Nature Cell Biology, 2013, 15, 1263-1265.	4.6	77
100	Regulation and roles of elongation factor 2 kinase. Biochemical Society Transactions, 2015, 43, 328-332.	1.6	77
101	Coupled Activation and Degradation of eEF2K Regulates Protein Synthesis in Response to Genotoxic Stress. Science Signaling, 2012, 5, ra40.	1.6	76
102	BDNF Stimulation of Protein Synthesis in Cortical Neurons Requires the MAP Kinase-Interacting Kinase MNK1. Journal of Neuroscience, 2015, 35, 972-984.	1.7	76
103	The multifaceted role of mTOR in cellular stress responses. DNA Repair, 2004, 3, 927-934.	1.3	75
104	Peptide-chain elongation in eukaryotes. Molecular Biology Reports, 1994, 19, 161-170.	1.0	74
105	Nutrients differentially regulate multiple translation factors and their control by insulin. Biochemical Journal, 1999, 344, 433-441.	1.7	74
106	Insulin-stimulated phosphorylation of initiation factor 4E is mediated by the MAP kinase pathway. FEBS Letters, 1996, 389, 162-166.	1.3	73
107	A Quantitative Molecular Model for Modulation of Mammalian Translation by the eIF4E-binding Protein 1. Journal of Biological Chemistry, 2001, 276, 20750-20757.	1.6	71
108	Roles of the mammalian target of rapamycin, mTOR, in controlling ribosome biogenesis and protein synthesis. Biochemical Society Transactions, 2012, 40, 168-172.	1.6	71

#	Article	IF	CITATIONS
109	The PSF·p54nrb Complex Is a Novel Mnk Substrate That Binds the mRNA for Tumor Necrosis Factor α. Journal of Biological Chemistry, 2008, 283, 57-65.	1.6	70
110	GCN2 contributes to mTORC1 inhibition by leucine deprivation through an ATF4 independent mechanism. Scientific Reports, 2016, 6, 27698.	1.6	70
111	Heat Shock Increases the Association of Binding Protein-1 with Initiation Factor 4E. Journal of Biological Chemistry, 1997, 272, 32779-32784.	1.6	69
112	Cloning and Expression of cDNA Encoding Protein Synthesis Elongation Factor-2 Kinase. Journal of Biological Chemistry, 1996, 271, 17547-17554.	1.6	68
113	Severity of vanishing white matter disease does not correlate with deficits in eIF2B activity or the integrity of eIF2B complexes. Human Mutation, 2011, 32, 1036-1045.	1.1	68
114	Purification, phosphorylation and control of the guanine-nucleotide-exchange factor from rabbit reticulocyte lysates. FEBS Journal, 1992, 208, 73-81.	0.2	67
115	Analysis of the subunit organization of the eIF2B complex reveals new insights into its structure and regulation. FASEB Journal, 2014, 28, 2225-2237.	0.2	67
116	Differing substrate specificities of members of the DYRK family of arginine-directed protein kinases. FEBS Letters, 2002, 510, 31-36.	1.3	66
117	Protein Kinase C Phosphorylates Ribosomal Protein S6 Kinase βII and Regulates Its Subcellular Localization. Molecular and Cellular Biology, 2003, 23, 852-863.	1.1	65
118	Involvement of phosphoinositide 3-kinase in insulin stimulation of MAP-kinase and phosphorylation of protein kinase-B in human skeletal muscle: implications for glucose metabolism. Diabetologia, 1997, 40, 1172-1177.	2.9	63
119	Peptide Substrates Suitable for Assaying Glycogen Synthase Kinase-3 in Crude Cell Extracts. Analytical Biochemistry, 1997, 244, 16-21.	1.1	63
120	Cleavage of translation initiation factor 4AI (eIF4AI) but not eIF4AII by foot-and-mouth disease virus 3C protease: identification of the eIF4AI cleavage site. FEBS Letters, 2001, 507, 1-5.	1.3	63
121	Purification and phosphorylation of elongation factor-2 kinase from rabbit reticulocytes. FEBS Journal, 1993, 212, 511-520.	0.2	62
122	Elongation Factor 2 Kinase Is Regulated by Proline Hydroxylation and Protects Cells during Hypoxia. Molecular and Cellular Biology, 2015, 35, 1788-1804.	1.1	62
123	Role of AMPK in regulation of LC3 lipidation as a marker of autophagy in skeletal muscle. Cellular Signalling, 2016, 28, 663-674.	1.7	62
124	Impaired associative taste learning and abnormal brain activation in kinase-defective eEF2K mice. Learning and Memory, 2012, 19, 116-125.	0.5	61
125	Regulation of the Elongation Phase of Protein Synthesis Enhances Translation Accuracy and Modulates Lifespan. Current Biology, 2019, 29, 737-749.e5.	1.8	60
126	Mechanisms Underlying Suppression of Protein Synthesis Induced by Transient Focal Cerebral Ischemia in Mouse Brain. Experimental Neurology, 2002, 177, 538-546.	2.0	59

#	Article	IF	CITATIONS
127	Features of the Catalytic Domains and C Termini of the MAPK Signal-integrating Kinases Mnk1 and Mnk2 Determine Their Differing Activities and Regulatory Properties. Journal of Biological Chemistry, 2005, 280, 37623-37633.	1.6	59
128	Leucine or carbohydrate supplementation reduces AMPK and eEF2 phosphorylation and extends postprandial muscle protein synthesis in rats. American Journal of Physiology - Endocrinology and Metabolism, 2011, 301, E1236-E1242.	1.8	59
129	The MAP kinase-interacting kinases regulate cell migration, vimentin expression and eIF4E/CYFIP1 binding. Biochemical Journal, 2015, 467, 63-76.	1.7	58
130	Nerve and Epidermal Growth Factor Induce Protein Synthesis and eIF2B Activation in PC12 Cells. Journal of Biological Chemistry, 1998, 273, 5536-5541.	1.6	57
131	eEF2K/eEF2 Pathway Controls the Excitation/Inhibition Balance and Susceptibility to Epileptic Seizures. Cerebral Cortex, 2017, 27, bhw075.	1.6	57
132	Turned on by insulin. Nature, 1994, 371, 747-748.	13.7	56
133	mTOR Signalling in Health and Disease. Biochemical Society Transactions, 2011, 39, 431-436.	1.6	56
134	Chloroquine and bafilomycin A mimic lysosomal storage disorders and impair mTORC1 signalling. Bioscience Reports, 2020, 40, .	1.1	56
135	ATP depletion increases phosphorylation of elongation factor eEF2 in adult cardiomyocytes independently of inhibition of mTOR signalling. FEBS Letters, 2002, 531, 448-452.	1.3	55
136	mTOR direct interactions with Rheb-GTPase and raptor: sub-cellular localization using fluorescence lifetime imaging. BMC Cell Biology, 2013, 14, 3.	3.0	55
137	Protein synthesis and its control in neuronal cells with a focus on vanishing white matter disease. Biochemical Society Transactions, 2009, 37, 1298-1310.	1.6	54
138	Use of monoclonal antibodies to study the structure and function of eukaryotic protein synthesis initiation factor eIF-2B. FEBS Journal, 1994, 221, 399-410.	0.2	53
139	Structure of the Eukaryotic Initiation Factor (eIF) 5 Reveals a Fold Common to Several Translation Factors,. Biochemistry, 2006, 45, 4550-4558.	1.2	53
140	A Novel Mechanism for the Control of Translation Initiation by Amino Acids, Mediated by Phosphorylation of Eukaryotic Initiation Factor 2B. Molecular and Cellular Biology, 2008, 28, 1429-1442.	1.1	52
141	ANG II activates effectors of mTOR via PI3-K signaling in human coronary smooth muscle cells. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H1232-H1238.	1.5	51
142	mTORC1 Plays an Important Role in Skeletal Development by Controlling Preosteoblast Differentiation. Molecular and Cellular Biology, 2017, 37, .	1.1	51
143	elF2B: recent structural and functional insights into a key regulator of translation. Biochemical Society Transactions, 2015, 43, 1234-1240.	1.6	50
144	p70 S6 Kinase Is Activated by Sodium Arsenite in Adult Rat Cardiomyocytes: Roles for Phosphatidylinositol 3-Kinase and p38 MAP Kinase. Biochemical and Biophysical Research Communications, 1997, 238, 207-212.	1.0	49

#	Article	IF	CITATIONS
145	Regulation of the phosphorylation of elongation factor 2 by MEK-dependent signalling in adult rat cardiomyocytes. FEBS Letters, 2002, 531, 285-289.	1.3	49
146	Translation factors: in sickness and in health. Trends in Biochemical Sciences, 2004, 29, 25-31.	3.7	49
147	Identification of autophosphorylation sites in eukaryotic elongation factor-2 kinase. Biochemical Journal, 2012, 442, 681-692.	1.7	49
148	mTORC1 signalling and eIF4E/4E-BP1 translation initiation factor stoichiometry influence recombinant protein productivity from GS-CHOK1 cells. Biochemical Journal, 2016, 473, 4651-4664.	1.7	49
149	Eukaryotic Elongation Factor 2 Kinase (eEF2K) in Cancer. Cancers, 2017, 9, 162.	1.7	49
150	Characterization of the Mammalian Initiation Factor eIF2B Complex as a GDP Dissociation Stimulator Protein. Journal of Biological Chemistry, 2001, 276, 24697-24703.	1.6	48
151	Interplay between insulin and nutrients in the regulation of translation factors. Biochemical Society Transactions, 2001, 29, 541-547.	1.6	47
152	Staurosporine inhibits phosphorylation of translational regulators linked to mTOR. Cell Death and Differentiation, 2001, 8, 841-849.	5.0	47
153	Regulation of protein synthesis in lymphoblasts from vanishing white matter patients. Neurobiology of Disease, 2006, 21, 496-504.	2.1	46
154	MNK Inhibition Sensitizes <i>KRAS</i> -Mutant Colorectal Cancer to mTORC1 Inhibition by Reducing eIF4E Phosphorylation and c-MYC Expression. Cancer Discovery, 2021, 11, 1228-1247.	7.7	45
155	Quantitative Proteomics Identifies Gemin5, A Scaffolding Protein Involved in Ribonucleoprotein Assembly, as a Novel Partner for Eukaryotic Initiation Factor 4E. Journal of Proteome Research, 2006, 5, 1367-1378.	1.8	44
156	Rapamycin enhances eIF4E phosphorylation by activating MAP kinaseâ€interacting kinase 2a (Mnk2a). FEBS Letters, 2013, 587, 2623-2628.	1.3	44
157	Ribosomal stress activates eEF2K–eEF2 pathway causing translation elongation inhibition and recruitment of Terminal Oligopyrimidine (TOP) mRNAs on polysomes. Nucleic Acids Research, 2014, 42, 12668-12680.	6.5	44
158	Mycobacterium tuberculosis subverts negative regulatory pathways in human macrophages to drive immunopathology. PLoS Pathogens, 2017, 13, e1006367.	2.1	44
159	Evidence that the dephosphorylation of Ser535 in the â^Š-subunit of eukaryotic initiation factor (eIF) 2B is insufficient for the activation of eIF2B by insulin. Biochemical Journal, 2002, 367, 475-481.	1.7	43
160	Features in the N and C Termini of the MAPK-interacting Kinase Mnk1 Mediate Its Nucleocytoplasmic Shuttling. Journal of Biological Chemistry, 2003, 278, 44197-44204.	1.6	43
161	Detailed Analysis of the Phosphorylation of the Human La (SS-B) Autoantigen. (De)phosphorylation Does Not Affect Its Subcellular Distributionâ€. Biochemistry, 2000, 39, 3023-3033.	1.2	42
162	Protein Kinase D Is a Key Regulator of Cardiomyocyte Lipoprotein Lipase Secretion After Diabetes. Circulation Research, 2008, 103, 252-260.	2.0	42

#	Article	IF	CITATIONS
163	Requirement for lysosomal localization of mTOR for its activation differs between leucine and other amino acids. Cellular Signalling, 2014, 26, 1918-1927.	1.7	42
164	Eukaryotic elongation factor 2 kinase regulates theÂsynthesis of microtubuleâ€related proteins in neurons. Journal of Neurochemistry, 2016, 136, 276-284.	2.1	42
165	Characterization of the Initiation Factor eIF2B and Its Regulation in Drosophila melanogaster. Journal of Biological Chemistry, 2001, 276, 3733-3742.	1.6	41
166	Oxidized LDL-Mediated Macrophage Survival Involves Elongation Factor-2 Kinase. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 92-98.	1.1	41
167	Transcriptional and metabolic rewiring of colorectal cancer cells expressing the oncogenic KRASC13D mutation. British Journal of Cancer, 2019, 121, 37-50.	2.9	41
168	mTOR, Unleashed. Science, 2007, 318, 926-927.	6.0	40
169	Pharmacological and Genetic Evaluation of Proposed Roles of Mitogen-activated Protein Kinase/Extracellular Signal-regulated Kinase Kinase (MEK), Extracellular Signal-regulated Kinase (ERK), and p90RSK in the Control of mTORC1 Protein Signaling by Phorbol Esters. Journal of Biological Chemistry, 2011, 286, 27111-27122.	1.6	40
170	Insights into the regulation of eukaryotic elongation factor 2 kinase and the interplay between its domains. Biochemical Journal, 2012, 442, 105-118.	1.7	40
171	Signaling crosstalk between the mTOR complexes. Translation, 2014, 2, e28174.	2.9	40
172	Growth-factor dependent expression of the translationally controlled tumour protein TCTP is regulated through the PI3-K/Akt/mTORC1 signalling pathway. Cellular Signalling, 2015, 27, 1557-1568.	1.7	40
173	Eukaryotic elongation factor 2 kinase promotes angiogenesis in hepatocellular carcinomaviaPI3K/Akt and STAT3. International Journal of Cancer, 2020, 146, 1383-1395.	2.3	40
174	Differing effects of rapamycin and mTOR kinase inhibitors on protein synthesis. Biochemical Society Transactions, 2011, 39, 446-450.	1.6	39
175	Impairing the production of ribosomal RNA activates mammalian target of rapamycin complex 1 signalling and downstream translation factors. Nucleic Acids Research, 2014, 42, 5083-5096.	6.5	39
176	Molecular Mechanism for the Control of Eukaryotic Elongation Factor 2 Kinase by pH: Role in Cancer Cell Survival. Molecular and Cellular Biology, 2015, 35, 1805-1824.	1.1	39
177	Insulin and Phorbol Ester Stimulate Initiation Factor elF-4E Phosphorylation by Distinct Pathways in Chinese Hamster Ovary Cells Overexpressing the Insulin Receptor. FEBS Journal, 1996, 236, 40-47.	0.2	38
178	cAMP inhibits translation by inducing Ca2+/calmodulin-independent elongation factor 2 kinase activity in IPC-81 cells. FEBS Letters, 1999, 444, 97-101.	1.3	38
179	The two forms of the β-subunit of initiation factor-2 from reticulocyte lysates arise from proteolytic degradation. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1989, 1008, 177-182.	2.4	37
180	Eukaryotic Initiation Factors 4A (elF4A) and 4G (elF4G) Mutually Interact in a 1:1 Ratio in Vivo. Journal of Biological Chemistry, 2001, 276, 29111-29115.	1.6	37

CHRISTOPHER G PROUD

#	Article	IF	CITATIONS
181	Shut-Down of Translation, a Global Neuronal Stress Response:Mechanisms and Pathological Relevance. Current Pharmaceutical Design, 2007, 13, 1887-1902.	0.9	36
182	Control of the translational machinery by amino acids. American Journal of Clinical Nutrition, 2014, 99, 231S-236S.	2.2	36
183	Elongation factor 2 kinase promotes cell survival by inhibiting protein synthesis without inducing autophagy. Cellular Signalling, 2016, 28, 284-293.	1.7	36
184	The N-terminal region of ABC50 interacts with eukaryotic initiation factor eIF2 and is a target for regulatory phosphorylation by CK2. Biochemical Journal, 2008, 409, 223-231.	1.7	34
185	β-Adrenergic agonists increase phosphorylation of elongation factor 2 in cardiomyocytes without eliciting calcium-independent eEF2 kinase activity. FEBS Letters, 2001, 489, 225-228.	1.3	33
186	Methods for Studying Signalâ€Dependent Regulation of Translation Factor Activity. Methods in Enzymology, 2007, 431, 113-142.	0.4	33
187	Dynamics of Elongation Factor 2 Kinase Regulation in Cortical Neurons in Response to Synaptic Activity. Journal of Neuroscience, 2015, 35, 3034-3047.	1.7	33
188	A synthetic peptide substrate for initiation factor-2 kinases. Biochemical and Biophysical Research Communications, 1991, 178, 430-437.	1.0	32
189	Glucose and amino acids modulate translation factor activation by growth factors in PC12 cells. Biochemical Journal, 2000, 347, 399-406.	1.7	32
190	Glucose exerts a permissive effect on the regulation of the initiation factor 4E binding protein 4E-BP1. Biochemical Journal, 2001, 358, 497-503.	1.7	32
191	Muscarinic receptor-mediated activation of p70 S6 kinase 1 (S6K1) in 1321N1 astrocytoma cells: permissive role of phosphoinositide 3-kinase. Biochemical Journal, 2003, 374, 137-143.	1.7	32
192	Translational Regulation of Terminal Oligopyrimidine mRNAs Induced by Serum and Amino Acids Involves Distinct Signaling Events. Journal of Biological Chemistry, 2004, 279, 13522-13531.	1.6	32
193	Defective translation initiation causes vanishing of cerebral white matter. Trends in Molecular Medicine, 2006, 12, 159-166.	3.5	32
194	Adult-onset leukoencephalopathies with vanishing white matter with novel missense mutations in EIF2B2, EIF2B3, and EIF2B5. Neurogenetics, 2011, 12, 259-261.	0.7	32
195	Eukaryotic elongation factor 2 kinase upregulates the expression of proteins implicated in cell migration and cancer cell metastasis. International Journal of Cancer, 2018, 142, 1865-1877.	2.3	32
196	Structure and phosphorylation of eukaryotic initiation factor 2. Casein kinase 2 and protein kinase C phosphorylate distinct but adjacent sites in the β-subunit. Biochimica Et Biophysica Acta - Molecular Cell Research, 1988, 968, 211-219.	1.9	31
197	Glucose exerts a permissive effect on the regulation of the initiation factor 4E binding protein 4E-BP1. Biochemical Journal, 2001, 358, 497.	1.7	31
198	A novel role for CRTC2 in hepatic cholesterol synthesis through SREBPâ€2. Hepatology, 2017, 66, 481-497.	3.6	31

#	Article	IF	CITATIONS
199	The composition of the gut microbiota following early-life antibiotic exposure affects host health and longevity in later life. Cell Reports, 2021, 36, 109564.	2.9	31
200	Identification of Novel Phosphorylation Sites in the β-Subunit of Translation Initiation Factor eIF-2. Biochemical and Biophysical Research Communications, 1994, 201, 1279-1288.	1.0	30
201	elF2B, the guanine nucleotide-exchange factor for eukaryotic initiation factor 2. Sequence conservation between the α, β and δ subunits of elF2B from mammals and yeast. Biochemical Journal, 1996, 318, 637-643.	1.7	30
202	The binding of PRAS40 to 14-3-3 proteins is not required for activation of mTORC1 signalling by phorbol esters/ERK. Biochemical Journal, 2008, 411, 141-149.	1.7	30
203	The MAP kinase-interacting kinases (MNKs) as targets in oncology. Expert Opinion on Therapeutic Targets, 2019, 23, 187-199.	1.5	30
204	Purification and phosphorylation of initiation factor eIF-2 from rabbit skeletal muscle. FEBS Letters, 1982, 143, 55-59.	1.3	29
205	The role of the β-subunit of initiation factor elF-2 in initiation complex formation. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1993, 1174, 117-121.	2.4	29
206	Ca2+-independent protein kinase C activity is required for alpha1-adrenergic-receptor-mediated regulation of ribosomal protein S6 kinases in adult cardiomyocytes. Biochemical Journal, 2003, 373, 603-611.	1.7	29
207	Who does TORC2 talk to?. Biochemical Journal, 2018, 475, 1721-1738.	1.7	29
208	Engineering mRNA Translation Initiation to Enhance Transient Gene Expression in Chinese Hamster Ovary Cells. Biotechnology Progress, 2003, 19, 121-129.	1.3	28
209	Analysis of the regulatory motifs in eukaryotic initiation factor 4Eâ€binding protein 1. FEBS Journal, 2008, 275, 2185-2199.	2.2	28
210	Design, synthesis and activity of Mnk1 and Mnk2 selective inhibitors containing thieno[2,3-d]pyrimidine scaffold. European Journal of Medicinal Chemistry, 2019, 162, 735-751.	2.6	28
211	Progress in developing MNK inhibitors. European Journal of Medicinal Chemistry, 2021, 219, 113420.	2.6	28
212	Dynamic Balancing: DEPTOR Tips the Scales. Journal of Molecular Cell Biology, 2009, 1, 61-63.	1.5	27
213	Glycine restores the anabolic response to leucine in a mouse model of acute inflammation. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E970-E981.	1.8	26
214	Amino acid sequence analysis of the β- and γ-subunits of eukaryotic initiation factor eIF-2. Identification of regions interacting with GTP. BBA - Proteins and Proteomics, 1991, 1079, 308-315.	2.1	25
215	eEF2K enhances expression of PD-L1 by promoting the translation of its mRNA. Biochemical Journal, 2020, 477, 4367-4381.	1.7	25
216	Regulation of binding of initiator tRNA to eukaryotic initiation factor eIF-2. FEBS Letters, 1982, 148, 214-220.	1.3	24

#	Article	IF	CITATIONS
217	Nutrients differentially regulate multiple translation factors and their control by insulin. Biochemical Journal, 1999, 344, 433.	1.7	24
218	The eukaryotic initiation factor 4E-binding proteins and apoptosis. Cell Death and Differentiation, 2005, 12, 541-546.	5.0	24
219	Rheb activates protein synthesis and growth in adult rat ventricular cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2008, 45, 812-820.	0.9	24
220	Natural Product-Derived Antitumor Compound Phenethyl Isothiocyanate Inhibits mTORC1 Activity via TSC2. Journal of Natural Products, 2012, 75, 1051-1057.	1.5	24
221	ABC50 mutants modify translation start codon selection. Biochemical Journal, 2015, 467, 217-229.	1.7	24
222	Depletion of ribosomal protein S19 causes a reduction of rRNA synthesis. Scientific Reports, 2016, 6, 35026.	1.6	24
223	Eukaryotic initiation factor 2 from rat liver: no apparent function for the β-subunit in the formation of initiation complexes. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1986, 868, 77-86.	2.4	23
224	Identification of Residues That Underpin Interactions within the Eukaryotic Initiation Factor (eIF2) 2B Complex. Journal of Biological Chemistry, 2012, 287, 8263-8274.	1.6	23
225	Dissecting the signaling pathways that mediate cancer in <i>PTEN</i> and <i>LKB1</i> double-knockout mice. Science Signaling, 2015, 8, pe1.	1.6	23
226	The eEF2 kinase-induced STAT3 inactivation inhibits lung cancer cell proliferation by phosphorylation of PKM2. Cell Communication and Signaling, 2020, 18, 25.	2.7	23
227	Regulation of polypeptide-chain initiation in rat skeletal muscle Starvation does not alter the activity or phosphorylation state of initiation factor elF-2. FEBS Letters, 1988, 239, 333-338.	1.3	22
228	Rapamycin-resistant phosphorylation of the initiation factor-4E-binding protein (4E-BP1) in v-SRC-transformed hamster fibroblasts. , 1999, 81, 963-969.		22
229	Glucose and amino acids modulate translation factor activation by growth factors in PC12 cells. Biochemical Journal, 2000, 347, 399.	1.7	22
230	p90RSKs mediate the activation of ribosomal RNA synthesis by the hypertrophic agonist phenylephrine in adult cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2013, 59, 139-147.	0.9	22
231	MRTF-A-NF-κB/p65 axis-mediated PDL1 transcription and expression contributes to immune evasion of non-small-cell lung cancer via TGF-β. Experimental and Molecular Medicine, 2021, 53, 1366-1378.	3.2	22
232	Phosphorylation of only serine-51 in protein synthesis initiation factor-2 is associated with inhibition of peptide-chain initiation in reticulocyte lysates. Biochemical and Biophysical Research Communications, 1991, 176, 993-999.	1.0	21
233	Phosphorylated seryl and threonyl, but not tyrosyl, residues are efficient specificity determinants for GSK-3β and Shaggy. FEBS Letters, 1999, 448, 86-90.	1.3	21
234	A Conserved Loop in the Catalytic Domain of Eukaryotic Elongation Factor 2 Kinase Plays a Key Role in Its Substrate Specificity. Molecular and Cellular Biology, 2014, 34, 2294-2307.	1.1	21

#	Article	IF	CITATIONS
235	mTORC2 is a tyrosine kinase. Cell Research, 2016, 26, 1-2.	5.7	21
236	eEF2/eEF2K Pathway in the Mature Dentate Gyrus Determines Neurogenesis Level and Cognition. Current Biology, 2020, 30, 3507-3521.e7.	1.8	21
237	Evidence for a role for protein kinase C in the stimulation of protein synthesis by insulin in swiss 3T3 fibroblasts. FEBS Letters, 1993, 316, 241-246.	1.3	20
238	The activation of eukaryotic initiation factor (eIF)2B by growth factors in PC12 cells requires MEK/ERK signalling. FEBS Letters, 2000, 476, 262-265.	1.3	20
239	The C-terminal domain of Mnk1a plays a dual role in tightly regulating its activity. Biochemical Journal, 2009, 423, 279-290.	1.7	20
240	The gene for the lysosomal protein LAMP3 is a direct target of the transcription factor ATF4. Journal of Biological Chemistry, 2020, 295, 7418-7430.	1.6	20
241	The α-Subunit of the Mammalian Guanine Nucleotide-Exchange Factor eIF-2B Is Essential for Catalytic Activity in Vitro. Biochemical and Biophysical Research Communications, 1996, 220, 843-847.	1.0	19
242	Cloning of cDNA for the γ-subunit of mammalian translation initiation factor 2B, the guanine nucleotide-exchange factor for eukaryotic initiation factor 2. Biochemical Journal, 1996, 318, 631-636.	1.7	19
243	Localisation and regulation of the elF4E-binding protein 4E-BP3. FEBS Letters, 2002, 532, 319-323.	1.3	19
244	Blocking eukaryotic initiation factor 4F complex formation does not inhibit the mTORC1-dependent activation of protein synthesis in cardiomyocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H505-H514.	1.5	19
245	A novel fluorescent probe reveals starvation controls the commitment of amyloid precursor protein to the lysosome. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 1554-1565.	1.9	19
246	Structure and Regulation of Enzymes for the Degradation and Resynthesis of Glycogen. Biochemical Society Transactions, 1975, 3, 849-854.	1.6	18
247	Phosphorylation of protein synthesis initiation factor-2. Identification of the site in the α-subunit phosphorylated in reticulocyte lysates. Biochimica Et Biophysica Acta - Molecular Cell Research, 1990, 1054, 83-88.	1.9	18
248	The substrate specificity of protein kinases which phosphorylate the alpha subunit of eukaryotic initiation factor 2. FEBS Journal, 1991, 195, 771-779.	0.2	18
249	Regulated stability of eukaryotic elongation factor 2 kinase requires intrinsic but not ongoing activity. Biochemical Journal, 2015, 467, 321-331.	1.7	18
250	Quantitative Non-canonical Amino Acid Tagging (QuaNCAT) Proteomics Identifies Distinct Patterns of Protein Synthesis Rapidly Induced by Hypertrophic Agents in Cardiomyocytes, Revealing New Aspects of Metabolic Remodeling. Molecular and Cellular Proteomics, 2016, 15, 3170-3189.	2.5	18
251	Disabling MNK protein kinases promotes oxidative metabolism and protects against diet-induced obesity. Molecular Metabolism, 2020, 42, 101054.	3.0	18
252	Identification of DNA response elements regulating expression of CCAAT/enhancer-binding protein (C/EBP) β and δ and MAP kinase-interacting kinases during early adipogenesis. Adipocyte, 2020, 9, 427-442.	1.3	18

#	Article	IF	CITATIONS
253	The regulation of protein synthesis and translation factors by CD3 and CD28 in human primary T lymphocytes. BMC Biochemistry, 2002, 3, 11.	4.4	17
254	Functional analysis of recently identified mutations in eukaryotic translation initiation factor 2BÉ› (eIF2BÉ›) identified in Chinese patients with vanishing white matter disease. Journal of Human Genetics, 2011, 56, 300-305.	1.1	17
255	Evaluation of mTOR-Regulated mRNA Translation. Methods in Molecular Biology, 2012, 821, 171-185.	0.4	17
256	Biochemical effects of mutations in the gene encoding the alpha subunit of eukaryotic initiation factor (eIF) 2B associated with Vanishing White Matter disease. BMC Medical Genetics, 2015, 16, 64.	2.1	17
257	Characterization of p75 neurotrophin receptor expression in human dental pulp stem cells. International Journal of Developmental Neuroscience, 2016, 53, 90-98.	0.7	17
258	Vanishing white matter: Eukaryotic initiation factor 2B model and the impact of missense mutations. Molecular Genetics & Genomic Medicine, 2021, 9, e1593.	0.6	17
259	Oncogenic MNK signalling regulates the metastasis suppressor NDRG1. Oncotarget, 2017, 8, 46121-46135.	0.8	17
260	Guanine nucleotide exchange factor for eukaryotic initiation factor-2. Cloning of cDNA for the δ-subunit of rabbit translation initiation factor-2B. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1994, 1217, 207-210.	2.4	16
261	Control of the translational machinery in mammalian cells. FEBS Journal, 2002, 269, 5337-5337.	0.2	16
262	On the Diversification of the Translation Apparatus across Eukaryotes. Comparative and Functional Genomics, 2012, 2012, 1-14.	2.0	16
263	Differing effects of the protein phosphatase inhibitors okadaic acid and microcystin on translation in reticulocyte lysates. Biochimica Et Biophysica Acta - Molecular Cell Research, 1991, 1093, 36-41.	1.9	15
264	Decreased insulin binding to mononuclear leucocytes and erythrocytes from dogs after S-nitroso-N-acetypenicillamine administration. BMC Biochemistry, 2002, 3, 1.	4.4	15
265	mTORC1 regulates the efficiency and cellular capacity for protein synthesis. Biochemical Society Transactions, 2013, 41, 923-926.	1.6	15
266	Impairing Eukaryotic Elongation Factor 2 Kinase Activity Decreases Atherosclerotic Plaque Formation. Canadian Journal of Cardiology, 2014, 30, 1684-1688.	0.8	15
267	Stoichiometry of the elF2B complex is maintained by mutual stabilization of subunits. Biochemical Journal, 2016, 473, 571-580.	1.7	15
268	capCLIP: a new tool to probe translational control in human cells through capture and identification of the eIF4E–mRNA interactome. Nucleic Acids Research, 2021, 49, e105-e105.	6.5	15
269	Rpl24Bst mutation suppresses colorectal cancer by promoting eEF2 phosphorylation via eEF2K. ELife, 2021, 10, .	2.8	15
270	Signalling pathways which regulate eIF4E. Biochemical Society Transactions, 1997, 25, 192S-192S.	1.6	14

#	Article	IF	CITATIONS
271	The Drosophila protein kinase LK6 is regulated by ERK and phosphorylates the eukaryotic initiation factor eIF4E in vivo. Biochemical Journal, 2005, 385, 695-702.	1.7	14
272	Ablation of elongation factor 2 kinase enhances heat-shock protein 90 chaperone expression and protects cells under proteotoxic stress. Journal of Biological Chemistry, 2019, 294, 7169-7176.	1.6	14
273	Reciprocal signaling between mTORC1 and MNK2 controls cell growth and oncogenesis. Cellular and Molecular Life Sciences, 2021, 78, 249-270.	2.4	14
274	Casein kinase-2 phosphorylates serine-2 in the β-subunit of initiation factor-2. Biochimica Et Biophysica Acta - Molecular Cell Research, 1989, 1010, 377-380.	1.9	13
275	The RNA-binding properties of protein synthesis initiation factor eIF-2. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1994, 1219, 293-301.	2.4	13
276	The highly acidic C-terminal region of the yeast initiation factor subunit 2 α (eIF-2 α) contains casein kinase phosphorylation sites and is essential for maintaining normal regulation of GCN4. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1995, 1261, 337-348.	2.4	13
277	Proteomic and Metabolomic Analyses of Vanishing White Matter Mouse Astrocytes Reveal Deregulation of ER Functions. Frontiers in Cellular Neuroscience, 2017, 11, 411.	1.8	13
278	Osteocalcinâ€dependent regulation of glucose metabolism and fertility: Skeletal implications for the development of insulin resistance. Journal of Cellular Physiology, 2018, 233, 3769-3783.	2.0	13
279	A high-throughput screening assay for eukaryotic elongation factor 2 kinase inhibitors. Acta Pharmaceutica Sinica B, 2016, 6, 557-563.	5.7	12
280	Regulation of mRNA translation. Essays in Biochemistry, 2001, 37, 97-108.	2.1	12
281	Purification and characterisation of an initiation-factor-2 kinase from uninduced mouse erythroleukaemia cells. FEBS Journal, 1993, 211, 529-538.	0.2	10
282	Glutamine deficiency in solid tumor cells confers resistance to ribosomal RNA synthesis inhibitors. Nature Communications, 2022, 13, .	5.8	10
283	Isolation and characterisation of the guanine nucleotide exchange factor from rat liver. BBA - Proteins and Proteomics, 1987, 914, 64-73.	2.1	9
284	The prohibitin-binding compound fluorizoline affects multiple components of the translational machinery and inhibits protein synthesis. Journal of Biological Chemistry, 2020, 295, 9855-9867.	1.6	9
285	The Lifeact-EGFP mouse is a translationally controlled fluorescent reporter of T cell activation. Journal of Cell Science, 2020, 133, .	1.2	9
286	Inhibiting mTOR activity using AZD2014 increases autophagy in the mouse cerebral cortex. Neuropharmacology, 2021, 190, 108541.	2.0	8
287	Phosphorylation of elongation factor-2 from the lepidopteran insect,spodoptera frugiperda. FEBS Letters, 1993, 327, 71-74.	1.3	7
288	A New Link in the Chain from Amino Acids to mTORC1 Activation. Molecular Cell, 2011, 44, 7-8.	4.5	7

#	Article	IF	CITATIONS
289	Nonâ€highâ€density lipoprotein cholesterol is more informative than traditional cholesterol indices in predicting diabetes risk for women with normal glucose tolerance. Journal of Diabetes Investigation, 2018, 9, 1304-1311.	1.1	7
290	Thioflavin T Monitoring of Guanine Quadruplex Formation in the rs689-Dependent INS Intron 1. Molecular Therapy - Nucleic Acids, 2019, 16, 770-777.	2.3	7
291	Regulation of Protein Synthesis by Insulin Through IRS-1. Progress in Molecular and Subcellular Biology, 2001, 26, 49-93.	0.9	7
292	Gut Microbiome Regulation of Autophagic Flux and Neurodegenerative Disease Risks. Frontiers in Microbiology, 2021, 12, 817433.	1.5	7
293	The role of eIF2 phosphorylation in cell and organismal physiology: new roles for well-known actors. Biochemical Journal, 2022, 479, 1059-1082.	1.7	7
294	Vanishing white matter: the next 10 years. Future Neurology, 2012, 7, 81-92.	0.9	6
295	MAPK-interacting kinase 2 (MNK2) regulates adipocyte metabolism independently of its catalytic activity. Biochemical Journal, 2020, 477, 2735-2754.	1.7	6
296	A sharper instrument for dissecting signalling events: a specific AGC kinase inhibitor. Biochemical Journal, 2007, 401, e1-3.	1.7	5
297	mTORC1 and Cell Cycle Control. The Enzymes, 2010, 27, 129-146.	0.7	5
298	Bicuculline regulated protein synthesis is dependent on Homer1 and promotes its interaction with eEF2K through mTORC1â€dependent phosphorylation. Journal of Neurochemistry, 2021, 157, 1086-1101.	2.1	5
299	The mTORC1 complex in pre-osteoblasts regulates whole-body energy metabolism independently of osteocalcin. Bone Research, 2021, 9, 10.	5.4	5
300	TSC-insensitive Rheb mutations induce oncogenic transformation through a combination of constitutively active mTORC1 signalling and proteome remodelling. Cellular and Molecular Life Sciences, 2021, 78, 4035-4052.	2.4	5
301	Metabolite-induced activation of hepatic phosphofructokinase. Biochemical and Biophysical Research Communications, 1984, 118, 567-572.	1.0	4
302	The effect of ethanol on polypeptide chain initiation in reticulocyte lysates. Biochemical Pharmacology, 1988, 37, 2045-2049.	2.0	4
303	Da-Chai-Hu-Tang Protects From Acute Intrahepatic Cholestasis by Inhibiting Hepatic Inflammation and Bile Accumulation via Activation of PPARα. Frontiers in Pharmacology, 2022, 13, 847483.	1.6	4
304	Synthesis of human initiation factor- $2\hat{l}$ ± in Saccharomyces cerevisiae. Gene, 1991, 108, 253-258.	1.0	3
305	Cyclosporin A but not FK506 activates the integrated stress response in human cells. Journal of Biological Chemistry, 2020, 295, 15134-15143.	1.6	3
306	Eukaryotic elongation factor 2 kinase regulates foam cell formation via translation of CD36. FASEB Journal, 2022, 36, e22154.	0.2	3

#	Article	IF	CITATIONS
307	Structural and functional properties of protein synthesis initiation factors eIF-2 and eIF-2B from rat liver. Biochemical Society Transactions, 1985, 13, 756-757.	1.6	2
308	Initiation complexes $\hat{a} \in \hat{~}$ reply to Gupta. Trends in Biochemical Sciences, 1987, 12, 55.	3.7	2
309	Cloning of cDNA for the β-subunit of rabbit translation initiation factor-2 using PCR. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1993, 1216, 170-172.	2.4	2
310	Role of Eukaryotic Initiation Factor elF2B in Vanishing White Matter Disease. , 0, , 595-618.		1
311	Deletion of <i>Rptor</i> in Preosteoblasts Reveals a Role for the Mammalian Target of Rapamycin Complex 1 (<scp>mTORC1)</scp> Complex in Dietaryâ€Induced Changes to Bone Mass and Glucose Homeostasis in Female Mice. JBMR Plus, 2021, 5, e10486.	1.3	1
312	Elongation factor eEF2 kinase and autophagy jointly promote survival of cancer cells. Biochemical Journal, 2021, 478, 1547-1569.	1.7	1
313	Constitutively active Rheb mutants [T23M] and [E40K] drive increased production and secretion of recombinant protein in Chinese hamster ovary cells. Biotechnology and Bioengineering, 2021, 118, 2422-2434.	1.7	1
314	The Phosphorylation of Rabbit Skeletal-Muscle Glycogen Synthase by Cyclic AMP-Dependent Protein Kinase. Biochemical Society Transactions, 1978, 6, 950-951.	1.6	0
315	Resonance assignment for the N-terminal region of the eukaryotic initiation factor 5 (eIF5). Journal of Biomolecular NMR, 2006, 36, 42-42.	1.6	0
316	The Worm Profits from Undercharging. Cell Metabolism, 2009, 9, 309-310.	7.2	0
317	mTOR Signaling Pathways. , 2021, , 1-7.		0
318	Regulation mTOR and its Substrates. , 2021, , 614-630.		0
319	Downstream Targets of mTORC1. , 2009, , 179-200.		0
320	Phosphorylation of Initiation and Elongation Factors and the Control of Translation. , 1990, , 527-537.		0
321	mTOR Signaling Pathways. , 2021, , 1010-1016.		0
322	eEF2K activity is required for the phenotypes of the Rpl24 mouse. Journal of Investigative Dermatology, 2022, , .	0.3	0