
Marco Oldiges

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7518100/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Bayesian calibration, process modeling and uncertainty quantification in biotechnology. PLoS Computational Biology, 2022, 18, e1009223.	3.2	10
2	bletl ―A Python package for integrating BioLector microcultivation devices in the Designâ€Buildâ€Testâ€Learn cycle. Engineering in Life Sciences, 2022, 22, 242-259.	3.6	18
3	Metabolic Footprinting of Microbial Systems Based on Comprehensive In Silico Predictions of MS/MS Relevant Data. Metabolites, 2022, 12, 257.	2.9	3
4	Catalytically Active Inclusion Bodies─Benchmarking and Application in Flow Chemistry. ACS Synthetic Biology, 2022, 11, 1881-1896.	3.8	5
5	Construction and characterization of BsGDH-CatlB variants and application as robust and highly active redox cofactor regeneration module for biocatalysis. Microbial Cell Factories, 2022, 21, .	4.0	3
6	Construction and comprehensive characterization of an EcLDCc-CatIB set—varying linkers and aggregation inducing tags. Microbial Cell Factories, 2021, 20, 49.	4.0	12
7	A fully automated pipeline for the dynamic atâ€line morphology analysis of microscale Aspergillus cultivation. Fungal Biology and Biotechnology, 2021, 8, 2.	5.1	6
8	Microbioreactorâ€assisted cultivation workflows for timeâ€efficient phenotyping of protein producing <i>Aspergillus niger</i> in batch and fedâ€batch mode. Biotechnology Progress, 2021, 37, e3144.	2.6	0
9	Need for speed: evaluation of dilute and shoot-mass spectrometry for accelerated metabolic phenotyping in bioprocess development. Analytical and Bioanalytical Chemistry, 2021, 413, 3253-3268.	3.7	6
10	Robotic integration enables autonomous operation of laboratory scale stirred tank bioreactors with modelâ€driven process analysis. Biotechnology and Bioengineering, 2021, 118, 2759-2769.	3.3	10
11	Metabolic engineering of Pseudomonas putida for production of the natural sweetener 5â€ketofructose from fructose or sucrose by periplasmic oxidation with a heterologous fructose dehydrogenase. Microbial Biotechnology, 2021, 14, 2592-2604.	4.2	4
12	Scaling production of GFP1-10 detector protein in E.Âcoli for secretion screening by split GFP assay. Microbial Cell Factories, 2021, 20, 191.	4.0	5
13	Biosensor-Based Optimization of Cutinase Secretion by Corynebacterium glutamicum. Frontiers in Microbiology, 2021, 12, 750150.	3.5	7
14	Parallelized microscale fed-batch cultivation in online-monitored microtiter plates: implications of media composition and feed strategies for process design and performance. Journal of Industrial Microbiology and Biotechnology, 2020, 47, 35-47.	3.0	8
15	Comprehensive analysis of metabolic sensitivity of 1,4â€butanediol producing <i>Escherichia coli</i> toward substrate and oxygen availability. Biotechnology Progress, 2020, 36, e2917.	2.6	8
16	Parallelized disruption of prokaryotic and eukaryotic cells via miniaturized and automated bead mill. Engineering in Life Sciences, 2020, 20, 350-356.	3.6	0
17	Screening of a genomeâ€reduced <i>Corynebacterium glutamicum</i> strain library for improved heterologous cutinase secretion. Microbial Biotechnology, 2020, 13, 2020-2031.	4.2	17
18	Catalytically-active inclusion bodies for biotechnology—general concepts, optimization, and application. Applied Microbiology and Biotechnology, 2020, 104, 7313-7329.	3.6	46

#	Article	IF	CITATIONS
19	FeedER: a feedback-regulated enzyme-based slow-release system for fed-batch cultivation in microtiter plates. Bioprocess and Biosystems Engineering, 2019, 42, 1843-1852.	3.4	15
20	Direct Analysis of Underivatized Amino Acids in Plant Extracts by LC-MS/MS (Improved Method). Methods in Molecular Biology, 2019, 2030, 403-414.	0.9	7
21	A FRET-based biosensor for the quantification of glucose in culture supernatants of mL scale microbial cultivations. Microbial Cell Factories, 2019, 18, 143.	4.0	20
22	Rapid and comprehensive evaluation of microalgal fatty acids via untargeted gas chromatography and timeâ€ofâ€flight mass spectrometry. Engineering in Life Sciences, 2019, 19, 1006-1011.	3.6	1
23	A closer look at Aspergillus: online monitoring via scattered light enables reproducible phenotyping. Fungal Biology and Biotechnology, 2019, 6, 11.	5.1	6
24	Carboxylic acid consumption and production by <i>Corynebacterium glutamicum</i> . Biotechnology Progress, 2019, 35, e2804.	2.6	6
25	Combinatorial impact of Sec signal peptides from <i>Bacillus subtilis</i> and bioprocess conditions on heterologous cutinase secretion by <i>Corynebacterium glutamicum</i> . Biotechnology and Bioengineering, 2019, 116, 644-655.	3.3	22
26	Less Sacrifice, More Insight: Repeated Lowâ€Volume Sampling of Microbioreactor Cultivations Enables Accelerated Deep Phenotyping of Microbial Strain Libraries. Biotechnology Journal, 2019, 14, e1800428.	3.5	31
27	Secretome Dynamics in a Gram-Positive Bacterial Model. Molecular and Cellular Proteomics, 2019, 18, 423-436.	3.8	12
28	Catalytically active inclusion bodies of L-lysine decarboxylase from E. coli for 1,5-diaminopentane production. Scientific Reports, 2018, 8, 5856.	3.3	45
29	Microbioreactor Systems for Accelerated Bioprocess Development. Biotechnology Journal, 2018, 13, e1700141.	3.5	117
30	Laboratory-scale photobiotechnology—current trends and future perspectives. FEMS Microbiology Letters, 2018, 365, .	1.8	6
31	Differential transcriptomic analysis reveals hidden light response in <i>Streptomyces lividans</i> . Biotechnology Progress, 2018, 34, 287-292.	2.6	3
32	Monitoring Protein Secretion in Streptomyces Using Fluorescent Proteins. Frontiers in Microbiology, 2018, 9, 3019.	3.5	11
33	Characterization of Sigma Factor Genes in Streptomyces lividans TK24 Using a Genomic Library-Based Approach for Multiple Gene Deletions. Frontiers in Microbiology, 2018, 9, 3033.	3.5	23
34	Germination and Growth Analysis of Streptomyces lividans at the Single-Cell Level Under Varying Medium Compositions. Frontiers in Microbiology, 2018, 9, 2680.	3.5	10
35	Multi-Omics and Targeted Approaches to Determine the Role of Cellular Proteases in Streptomyces Protein Secretion. Frontiers in Microbiology, 2018, 9, 1174.	3.5	29
36	Improved microscale cultivation of Pichia pastoris for clonal screening. Fungal Biology and Biotechnology, 2018, 5, 8.	5.1	12

#	Article	IF	CITATIONS
37	Comparative evaluation of phototrophic microtiter plate cultivation against laboratory-scale photobioreactors. Bioprocess and Biosystems Engineering, 2017, 40, 663-673.	3.4	9
38	Fast and reliable strain characterization of <i>Streptomyces lividans</i> through microâ€scale cultivation. Biotechnology and Bioengineering, 2017, 114, 2011-2022.	3.3	37
39	pH fluctuations imperil the robustness of C. glutamicum to short term oxygen limitation. Journal of Biotechnology, 2017, 259, 248-260.	3.8	16
40	A framework for accelerated phototrophic bioprocess development: integration of parallelized microscale cultivation, laboratory automation and Kriging-assisted experimental design. Biotechnology for Biofuels, 2017, 10, 26.	6.2	13
41	Design and validation of a parallelized microâ€photobioreactor enabling phototrophic bioprocess development at elevated throughput. Biotechnology and Bioengineering, 2017, 114, 122-131.	3.3	16
42	Metabolic profile of 1,5â€diaminopentane producing <i>Corynebacterium glutamicum</i> under scaleâ€down conditions: Blueprint for robustness to bioreactor inhomogeneities. Biotechnology and Bioengineering, 2017, 114, 560-575.	3.3	41
43	Generic Protocol for Optimization of Heterologous Protein Production Using Automated Microbioreactor Technology. Journal of Visualized Experiments, 2017, , .	0.3	5
44	Automated growth rate determination in high-throughput microbioreactor systems. BMC Research Notes, 2017, 10, 617.	1.4	15
45	Performance loss of <i>Corynebacterium glutamicum</i> cultivations under scaleâ€down conditions using complex media. Engineering in Life Sciences, 2016, 16, 620-632.	3.6	18
46	Use of a Sec signal peptide library from Bacillus subtilis for the optimization of cutinase secretion in Corynebacterium glutamicum. Microbial Cell Factories, 2016, 15, 208.	4.0	49
47	Current state and challenges for dynamic metabolic modeling. Current Opinion in Microbiology, 2016, 33, 97-104.	5.1	40
48	Simplified cryopreservation of the microalga <i>Chlorella vulgaris</i> integrating a novel concept for cell viability estimation. Engineering in Life Sciences, 2016, 16, 36-44.	3.6	14
49	Distinct purinergic signaling pathways in prepubescent mouse spermatogonia. Journal of General Physiology, 2016, 148, 253-271.	1.9	14
50	Plug flow versus stirred tank reactor flow characteristics in twoâ€compartment scaleâ€down bioreactor: Setupâ€specific influence on the metabolic phenotype and bioprocess performance of <i>Corynebacterium glutamicum</i> . Engineering in Life Sciences, 2016, 16, 610-619.	3.6	33
51	Framework for Krigingâ€based iterative experimental analysis and design: Optimization of secretory protein production in <i>Corynebacterium glutamicum</i> . Engineering in Life Sciences, 2016, 16, 538-549.	3.6	27
52	Automation of a Nile red staining assay enables high throughput quantification of microalgal lipid production. Microbial Cell Factories, 2016, 15, 34.	4.0	26
53	13C Tracers for Glucose Degrading Pathway Discrimination in Gluconobacter oxydans 621H. Metabolites, 2015, 5, 455-474.	2.9	0
54	Bioprocess automation on a Mini Pilot Plant enables fast quantitative microbial phenotyping. Microbial Cell Factories, 2015, 14, 32.	4.0	62

4

#	Article	lF	CITATIONS
55	InÂvivo assessment by Mach–Zehnder doubleâ€beam interferometry of the invasive force exerted by the Asian soybean rust fungus (Phakopsora pachyrhizi). New Phytologist, 2014, 203, 620-631.	7.3	34
56	Process inhomogeneity leads to rapid side product turnover in cultivation of Corynebacterium glutamicum. Microbial Cell Factories, 2014, 13, 6.	4.0	56
57	Assessment of robustness against dissolved oxygen/substrate oscillations for C. glutamicum DM1933 in two-compartment bioreactor. Bioprocess and Biosystems Engineering, 2014, 37, 1151-1162.	3.4	49
58	Rapid assessment of oxygen transfer impact for Corynebacterium glutamicum. Bioprocess and Biosystems Engineering, 2014, 37, 2567-2577.	3.4	19
59	Application of metabolic engineering for the biotechnological production of l-valine. Applied Microbiology and Biotechnology, 2014, 98, 5859-5870.	3.6	59
60	Conversion of Corynebacterium glutamicum from an aerobic respiring to an aerobic fermenting bacterium by inactivation of the respiratory chain. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 699-708.	1.0	36
61	An automated workflow for enhancing microbial bioprocess optimization on a novel microbioreactor platform. Microbial Cell Factories, 2012, 11, 144.	4.0	96
62	Direct Analysis of Underivatized Amino Acids in Plant Extracts by LC-MS-MS. Methods in Molecular Biology, 2012, 828, 317-328.	0.9	24
63	Polyketide Proofreading by an Acyltransferase-like Enzyme. Chemistry and Biology, 2012, 19, 329-339.	6.0	52
64	Stationary versus non-stationary 13C-MFA: A comparison using a consistent dataset. Journal of Biotechnology, 2011, 154, 179-190.	3.8	62
65	Comparative ¹³ C Metabolic Flux Analysis of Pyruvate Dehydrogenase Complex-Deficient, <scp>I</scp> -Valine-Producing Corynebacterium glutamicum. Applied and Environmental Microbiology, 2011, 77, 6644-6652.	3.1	70
66	Importance of NADPH supply for improved <scp>L</scp> â€valine formation in <i>Corynebacterium glutamicum</i> . Biotechnology Progress, 2010, 26, 361-371.	2.6	67
67	Analysing overexpression of l-valine biosynthesis genes in pyruvate-dehydrogenase-deficient Corynebacterium glutamicum. Journal of Industrial Microbiology and Biotechnology, 2010, 37, 263-270.	3.0	13
68	Studies on substrate utilisation in l-valine-producing Corynebacterium glutamicum strains deficient in pyruvate dehydrogenase complex. Bioprocess and Biosystems Engineering, 2010, 33, 873-883.	3.4	9
69	Metabolic and Transcriptional Response to Cofactor Perturbations in Escherichia coli. Journal of Biological Chemistry, 2010, 285, 17498-17506.	3.4	115
70	Metabolic Impact of Increased NADH Availability in <i>Saccharomyces cerevisiae</i> . Applied and Environmental Microbiology, 2010, 76, 851-859.	3.1	47
71	A 2-oxoacid dehydrogenase complex of Haloferax volcanii is essential for growth on isoleucine but not on other branched-chain amino acids. Microbiology (United Kingdom), 2010, 156, 521-529.	1.8	16
72	Technische Chemie 2009. Nachrichten Aus Der Chemie, 2010, 58, 350-361.	0.0	0

#	Article	IF	CITATIONS
73	Modeling metabolic networks in C. glutamicum: a comparison of rate laws in combination with various parameter optimization strategies. BMC Systems Biology, 2009, 3, 5.	3.0	59
74	Metabolomics for biotransformations: Intracellular redox cofactor analysis and enzyme kinetics offer insight into whole cell processes. Biotechnology and Bioengineering, 2009, 104, 251-260.	3.3	22
75	The identification of enzyme targets for the optimization of a valine producing <i>Corynebacterium glutamicum</i> strain using a kinetic model. Biotechnology Progress, 2009, 25, 754-762.	2.6	23
76	Metabolic quenching of Corynebacterium glutamicum: efficiency of methods and impact of cold shock. Bioprocess and Biosystems Engineering, 2009, 32, 581-592.	3.4	43
77	Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae. Metabolic Engineering, 2009, 11, 253-261.	7.0	100
78	Application of immobilized bovine enterokinase in repetitive fusion protein cleavage for the production of mucin 1. Biotechnology Journal, 2009, 4, 1610-1618.	3.5	7
79	Analysis of amino acids without derivatization in barley extracts by LC-MS-MS. Analytical and Bioanalytical Chemistry, 2008, 391, 2663-2672.	3.7	95
80	Corynebacterium glutamicum tailored for high-yield L-valine production. Applied Microbiology and Biotechnology, 2008, 79, 471-479.	3.6	131
81	Influence of l-isoleucine and pantothenate auxotrophy for l-valine formation in Corynebacterium glutamicum revisited by metabolome analyses. Bioprocess and Biosystems Engineering, 2008, 31, 217-225.	3.4	32
82	Metabolic flux analysis at ultra short time scale: Isotopically non-stationary 13C labeling experiments. Journal of Biotechnology, 2007, 129, 249-267.	3.8	194
83	Benchmarking evolutionary algorithms on convenience kinetics models of the valine and leucine biosynthesis in C. glutamicum. , 2007, , .		2
84	Comparing various evolutionary algorithms on the parameter optimization of the valine and leucine biosynthesis in corynebacterium glutamicum. , 2007, , .		2
85	l-Valine Production with Pyruvate Dehydrogenase Complex-Deficient Corynebacterium glutamicum. Applied and Environmental Microbiology, 2007, 73, 2079-2084.	3.1	135
86	A Microstructure Heat Exchanger for Quenching the Metabolism of Mammalian Cells. Chemical Engineering and Technology, 2007, 30, 322-328.	1.5	19
87	Simultaneous determination of multiple intracellular metabolites in glycolysis, pentose phosphate pathway and tricarboxylic acid cycle by liquid chromatography–mass spectrometry. Journal of Chromatography A, 2007, 1147, 153-164.	3.7	430
88	Effect of pyruvate dehydrogenase complex deficiency on l-lysine production with Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 2007, 76, 615-623.	3.6	60
89	Metabolomics: current state and evolving methodologies and tools. Applied Microbiology and Biotechnology, 2007, 76, 495-511.	3.6	206
90	Standard reporting requirements for biological samples in metabolomics experiments: microbial and inÂvitro biology experiments. Metabolomics, 2007, 3, 189-194.	3.0	50

#	Article	IF	CITATIONS
91	Emerging Corynebacterium glutamicum systems biology. Journal of Biotechnology, 2006, 124, 74-92.	3.8	103
92	Monitoring and Modeling of the Reaction Dynamics in the Valine/Leucine Synthesis Pathway in Corynebacterium glutamicum. Biotechnology Progress, 2006, 22, 1071-1083.	2.6	45
93	From Enzyme Kinetics to Metabolic Network Modeling – Visualization Tool for Enhanced Kinetic Analysis of Biochemical Network Models. Engineering in Life Sciences, 2006, 6, 155-162.	3.6	7
94	Stimulation, Monitoring, and Analysis of Pathway Dynamics by Metabolic Profiling in the Aromatic Amino Acid Pathway. Biotechnology Progress, 2004, 20, 1623-1633.	2.6	65