
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7517934/publications.pdf Version: 2024-02-01

1	1.1	

#	Article	IF	CITATIONS
1	Tunable Ultraviolet Second Harmonics Generation Pumped by Supercontinuum Laser. IEEE Photonics Journal, 2022, 14, 1-7.	2.0	0
2	Photodarkening mechanisms of Pr ³⁺ singly doped and Pr ³⁺ /Ce ³⁺ coâ€doped silicate glasses and fibers. Journal of the American Ceramic Society, 2022, 105, 3291-3302.	3.8	3
3	Temperature Dependence of Absorption and Energy Transfer Efficiency of Er3+/Yb3+/P5+ Co-Doped Silica Fiber Core Glasses. Materials, 2022, 15, 996.	2.9	3
4	High relative-intensity blue light of supercontinuum generation in photonic crystal fibers. Journal of the Optical Society of America B: Optical Physics, 2022, 39, 764.	2.1	1
5	Monolithic edge-cladding process for the elliptical disk of N31-type Nd-doped high-power laser glass. High Power Laser Science and Engineering, 2022, 10, .	4.6	8
6	Influence of GeO2 Content on the Spectral and Radiation-Resistant Properties of Yb/Al/Ge Co-Doped Silica Fiber Core Glasses. Materials, 2022, 15, 2235.	2.9	1
7	Nanocrystalline Yb:YAC-Doped Silica Glass with Good Transmittance and Significant Spectral Performance Enhancements. Nanomaterials, 2022, 12, 1263.	4.1	5
8	Temperature-Dependent Group Delay of Photonic-Bandgap Hollow-Core Fiber Tuned by Surface-Mode Coupling. Optics Express, 2022, 30, 222.	3.4	3
9	Coherent Supercontinuum Generation in Step-Index Heavily Ge-Doped Silica Fibers With All Normal Dispersion. IEEE Photonics Journal, 2022, 14, 1-6.	2.0	1
10	Revealing the Structures in Short- and Middle-Order of Lanthanum-Doped Al ₂ O ₃ –NaPO ₃ Glasses by Solid State NMR Spectroscopy. Journal of Physical Chemistry C, 2021, 125, 2097-2110.	3.1	7
11	Influence of Al/Er ratio on the optical properties and structures of Er3+/ Al3+ co-doped silica glasses. Journal of Applied Physics, 2021, 129, .	2.5	14
12	Clarifying the Different Roles of Rare Earth Ions in the Crystallization of Upconversion Oxyfluoride Glass Ceramics by Solid-State Nuclear Magnetic Resonance Spectroscopy. Inorganic Chemistry, 2021, 60, 3401-3409.	4.0	8
13	Clarifying a Competitive Crystallization Mechanism of Upconversion Luminescent Oxyfluoride Glass Ceramics by Solid-State NMR Spectroscopy. Inorganic Chemistry, 2021, 60, 5087-5099.	4.0	4
14	Structural origin of thermally induced refractive index changes in Yb ³⁺ /Al ³⁺ /P ⁵⁺ /F ^{â^'} â€coâ€doped silica glass. Journal of the American Ceramic Society, 2021, 104, 5016-5029.	3.8	4
15	Phase Change of NaYF ₄ :Er Crystals in Oxyfluoride Phosphate Upconversion Luminescent Glass Ceramics: An Advanced Solid-State NMR Study. Inorganic Chemistry, 2021, 60, 5868-5881.	4.0	6
16	Inverse Design of Equivalent-Graded-Index Photonic-Crystal Fiber Based on Empirical Dispersion Formula. Journal of Lightwave Technology, 2021, 39, 5598-5603.	4.6	7
17	Investigation of Er ³⁺ -Doped Phosphate Glass for L+ Band Optical Amplification. IEEE Photonics Journal, 2021, 13, 1-6.	2.0	4
18	Fluorophosphate Upconversion-Luminescent Glass-Ceramics Containing Ba ₂ LaF ₇ :Er ³⁺ Nanocrystals: An Advanced Solid-State Nuclear Magnetic Resonance Study. Journal of Physical Chemistry C, 2021, 125, 26901-26915.	3.1	5

#	Article	IF	CITATIONS
19	Effect of Li ₂ O substitution on structures and properties of Nd ³⁺ â€doped Al(PO ₃) ₃ â€Li ₂ O glasses. International Journal of Applied Glass Science, 2020, 11, 66-77.	2.0	2
20	Emission properties of Pr3+-doped aluminosilicate glasses at visible wavelengths. Journal of Luminescence, 2020, 220, 117013.	3.1	21
21	Visible emission and energy transfer in Tb ³⁺ /Dy ³⁺ coâ€doped phosphate glasses. Journal of the American Ceramic Society, 2020, 103, 6847-6859.	3.8	19
22	Ultraviolet-Extended Supercontinuum Generation in Zero-Dispersion Wavelength Decreasing Photonic Crystal Fibers. IEEE Photonics Journal, 2020, 12, 1-8.	2.0	6
23	Editorial special issue women in glass. International Journal of Applied Glass Science, 2020, 11, 383-384.	2.0	0
24	Doping Induces Structural Phase Transitions in All-Inorganic Lead Halide Perovskite Nanocrystals. , 2020, 2, 367-375.		42
25	Structural Studies of Rare Earth-Doped Fluoroborosilicate Glasses by Advanced Solid-State NMR. Journal of Physical Chemistry C, 2020, 124, 8919-8929.	3.1	10
26	Fast Ionic Conducting Glasses in the System 20LiCl–40Li ₂ O–(80– <i>x</i>)PO _{5/2} – <i>x</i> MoO ₃ : The Struct Dependence of Ion Conductivity Studied by Solid-State Nuclear Magnetic Resonance Spectroscopy. Journal of Physical Chemistry C, 2020, 124, 6528-6535.	ural 3.1	13
27	Paving way for fabrication of silica-based single -frequency seed laser: Ultrahighly Yb-doped optical fibers via sol-gel method combined with silica tube inner wall coating and fusion-tapering technique. Optics and Laser Technology, 2020, 131, 106425.	4.6	2
28	Compositional dependence of Stark splitting and spectroscopic properties in Yb3+-doped lead silicate glasses. Journal of Non-Crystalline Solids, 2020, 532, 119890.	3.1	11
29	Effect of B ₂ O ₃ addition on structure and properties of Yb ³⁺ /Al ³⁺ /B ³⁺ â€coâ€doped silica glasses. Journal of the American Ceramic Society, 2020, 103, 4275-4285.	3.8	7
30	Pretreatment by recyclable Fe ₃ O ₄ @Mg/Al-CO ₃ -LDH magnetic nano-adsorbent to dephosphorize for the determination of trace F ^{â^'} and Cl ^{â^'} in phosphorus-rich solutions. RSC Advances, 2020, 10, 44361-44372.	3.6	6
31	Study of Spectroscopic Properties of Pr3+ and Tb3+-Doped Glasses as Gain Fiber Materials. , 2020, , .		0
32	Phaseâ€Separation Engineering of Glass for Drastic Enhancement of Upconversion Luminescence. Advanced Optical Materials, 2019, 7, 1801572.	7.3	30
33	Effect of AlPO4 join concentration on optical properties and radiation hardening performance of Yb-doped Al2O3-P2O5-SiO2 glass. Journal of Applied Physics, 2019, 125, .	2.5	18
34	Precipitation of Er ³⁺ -doped Na ₅ Y ₉ F ₃₂ crystals from fluoro-phosphate glasses: an advanced solid-state NMR spectroscopic study. Journal of Materials Chemistry C, 2019, 7, 6728-6743.	5.5	21
35	Research on Photo-Radiation Darkening Performance of Ytterbium-Doped Silica Fibers for Space Applications. Journal of Lightwave Technology, 2019, 37, 1091-1097.	4.6	4
36	Origin of Radiation-Induced Darkening in Yb ³⁺ /Al ³⁺ /P ⁵⁺ -Doped Silica Glasses: Effect of the P/Al Ratio. Journal of Physical Chemistry B, 2018, 122, 2809-2820.	2.6	48

#	Article	IF	CITATIONS
37	Highly stable and efficient pure green up-conversion emission of rod-like β-NaGdF ₄ :Yb ³⁺ ,Ho ³⁺ submicro-crystals <i>via</i> ion-exchange for fluorescent labeling. Journal of Materials Chemistry C, 2018, 6, 5210-5217.	5.5	16
38	Broadband visible luminescence in tin fluorophosphate glasses with ultra-low glass transition temperature. RSC Advances, 2018, 8, 4921-4927.	3.6	28
39	Absolute up-conversion quantum efficiency reaching 4% in β-NaYF ₄ :Yb ³⁺ ,Er ³⁺ micro-cylinders achieved by Li ⁺ /Na ⁺ ion-exchange. Journal of Materials Chemistry C, 2018, 6, 5453-5461.	5.5	36
40	Effect of sintering temperature on the photoluminescence properties of red-emitting color conversion glass. Journal of Materials Science: Materials in Electronics, 2018, 29, 2035-2039.	2.2	8
41	Black Phosphorus Q-Switched Large-Mode-Area Tm-Doped Fiber Laser. International Journal of Optics, 2018, 2018, 1-6.	1.4	9
42	Ultraflat, broadband, and highly coherent supercontinuum generation in all-solid microstructured optical fibers with all-normal dispersion. Photonics Research, 2018, 6, 601.	7.0	48
43	Rare-Earth Ion Local Environments in Nd:Al2 O3 -P2 O5 -K2 O Glass Studied by Electron Paramagnetic Resonance Spectroscopies. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1800100.	2.4	9
44	Efficient dualâ€mode upâ€conversion and downâ€shifting emission in βâ€NaYF ₄ :Yb ³⁺ ,Er ³⁺ microcrystals via ion exchange. Journal of the American Ceramic Society, 2017, 100, 3061-3069.	3.8	17
45	Yb–Er doped composite fiber with silicate clad and phosphate core prepared by stack-and-draw method. Optical and Quantum Electronics, 2017, 49, 1.	3.3	4
46	Near Infrared Quantum Cutting Luminescence of Er3+/Tm3+ Ion Pairs in a Telluride Glass. Scientific Reports, 2017, 7, 1976.	3.3	5
47	Monodisperse β-NaYF ₄ :Yb ³⁺ ,Tm ³⁺ hexagonal microplates with efficient NIR-to-NIR up-conversion emission developed via ion exchange. Journal of Materials Chemistry C, 2017, 5, 9770-9777.	5.5	23
48	Thermal stability and reliability studies of (Sr, Ca) AlSiN3:Eu2+ phosphors for LED application. Journal of Materials Science: Materials in Electronics, 2017, 28, 19155-19163.	2.2	6
49	Research and development of new neodymium laserÂglasses. High Power Laser Science and Engineering, 2017, 5, .	4.6	54
50	Enormously enhanced upconversion emission in β-NaYF4:20Yb,2Er microcrystals via Na+ ion exchange. Journal of Materials Science, 2017, 52, 869-877.	3.7	15
51	Preparation of ultra-broadband antireflective coatings for amplifier blast shields by a sol–gel method. High Power Laser Science and Engineering, 2017, 5, .	4.6	2
52	Three-level Nd3+ luminescence enhancement in all-solid silicate glass photonic bandgap fiber. IEEE Photonics Technology Letters, 2016, , 1-1.	2.5	1
53	Dual-Wavelength Laser Output in Nd3+/Yb3+Co-Doped Phosphate Glass Fiber Under 970 nm Pumping. IEEE Photonics Technology Letters, 2016, 28, 2673-2676.	2.5	8
54	Yb–Er co-doped phosphate fiber with hexagonal inner cladding. Applied Physics B: Lasers and Optics, 2016, 122, 1.	2.2	2

#	Article	IF	CITATIONS
55	Silicate Glass Hybrid Fiber With All-Normal Dispersion for Coherent Supercontinuum. Journal of Lightwave Technology, 2016, 34, 3523-3528.	4.6	5
56	0.5-GHz Repetition Rate Fundamentally Tm-Doped Mode-Locked Fiber Laser. IEEE Photonics Technology Letters, 2016, 28, 1525-1528.	2.5	15
57	Fabrication and Laser Amplification Behavior of Yb3+/Al3+ Co-Doped Photonic Crystal Fiber. IEEE Photonics Technology Letters, 2016, 28, 391-393.	2.5	9
58	Large-mode-area single-mode-output Neodymium-doped silicate glass all-solid photonic crystal fiber. Scientific Reports, 2015, 5, 12547.	3.3	11
59	\$sim 2\$ -\$mu ext{m}\$ Single-Mode Laser Output in Tm ³⁺ -Doped Tellurium Germanate Double-Cladding Fiber. IEEE Photonics Technology Letters, 2015, 27, 1702-1704.	2.5	9
60	All-Fiber Passively Q-Switched Laser Based on Tm3+-Doped Tellurite Fiber. IEEE Photonics Technology Letters, 2015, 27, 689-692.	2.5	10
61	Origin of near to middle infrared luminescence and energy transfer process of Er3+/Yb3+co-doped fluorotellurite glasses under different excitations. Scientific Reports, 2015, 5, 8233.	3.3	66
62	Silicate Glass All-Solid Photonic Bandgap Crystal Fiber. IEEE Photonics Technology Letters, 2015, 27, 189-192.	2.5	8
63	Effect of P5+ on spectroscopy and structure of Yb3+/Al3+/P5+ co-doped silica glass. Journal of Luminescence, 2015, 167, 8-15.	3.1	37
64	Phosphate ytterbium-doped single-mode all-solid photonic crystal fiber with output power of 13.8â€W. Scientific Reports, 2015, 5, 8490.	3.3	18
65	Energy Transfer between Er3+ and Pr3+ for 2.7 μm Fiber Laser Material. Fibers, 2014, 2, 24-33.	4.0	4
66	Phosphate single mode large mode area all-solid photonic crystal fiber with multi-watt output power. Applied Physics Letters, 2014, 104, 131111.	3.3	22
67	Efficient 2.05μ4m emission of Ho3+/Yb3+/Er3+ triply doped fluorotellurite glasses. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 122, 711-714.	3.9	9
68	2.7 μm Emission properties of Er3+ doped fluorozirconate glass. Glass Physics and Chemistry, 2014, 40, 277-282.	0.7	2
69	Yb/Er co-doped phosphate all-solid single-mode photonic crystal fiber. Scientific Reports, 2014, 4, 6139.	3.3	14
70	Spectroscopic properties and energy transfer parameters of Er3+- doped fluorozirconate and oxyfluoroaluminate glasses. Scientific Reports, 2014, 4, 5053.	3.3	61
71	2.7 μm emission of high thermally and chemically durable glasses based on AlF3. Scientific Reports, 2014, 4, 3607.	3.3	53
72	Characteristics and Laser Performance of Yb3+-Doped Silica Large Mode Area Fibers Prepared by Sol–Gel Method. Fibers, 2013, 1, 93-100.	4.0	13

#	Article	IF	CITATIONS
73	â^1⁄42Âμm Luminescence and energy transfer characteristics in Tm3+/Ho3+co-doped silicate glass. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 127, 70-77.	2.3	69
74	Energy transfer characteristics of silicate glass doped with Er3+, Tm3+, and Ho3+ for â^¼2 μm emission. Journal of Applied Physics, 2013, 114, 243501.	2.5	22
75	Er3+/Ho3+-Codoped Fluorotellurite Glasses for 2.7 µm Fiber Laser Materials. Fibers, 2013, 1, 11-20.	4.0	17
76	Origin of 2.7 μm luminescence and energy transfer process of Er3+: 4l11/2→4l13/2 transition in Er3+/Yb3+ doped germanate glasses. Journal of Applied Physics, 2012, 111, 033524.	2.5	26
77	Compositional dependence of the 1.8 <i>μ</i> m emission properties of Tm3+ ions in silicate glass. Journal of Applied Physics, 2012, 112, .	2.5	39
78	Transmission properties of a new glass ceramic and doped with Co2+ as saturable absorber for 1.54 µm Er glass short pulse laser. Journal Wuhan University of Technology, Materials Science Edition, 2012, 27, 54-57.	1.0	3
79	Enhanced 2.7 μ m Emission from Er3+/Tm3+/Pr3+ Triply Doped Fluoride Glass. Journal of the American Ceramic Society, 2011, 94, 2289-2291.	3.8	23
80	Comparative investigation on the 2.7 μm emission in Er3+/Ho3+ codoped fluorophosphate glass. Journal of Applied Physics, 2011, 110, 093106.	2.5	22
81	Enhanced 2.7 μ4m emission and energy transfer mechanism of Nd3+/Er3+ co-doped sodium tellurite glasses. Journal of Applied Physics, 2011, 110, .	2.5	38
82	Enhanced effect of Ce3+ ions on 2 <i>μ<</i> m emission and energy transfer properties in Yb3+/Ho3+ doped fluorophosphate glasses. Journal of Applied Physics, 2011, 109, .	2.5	24
83	A method for emission cross section determination of Tm3+ at 2.0â€,μm emission. Journal of Applied Physics, 2010, 108, .	2.5	13
84	2.0 â€, μ m emission properties and energy transfer processes of Yb3+/Ho3+ codoped germanate glass. Journal of Applied Physics, 2010, 108, .	2.5	65
85	1.8â€,μm emission of highly thulium doped fluorophosphate glasses. Journal of Applied Physics, 2010, 108, 083504.	2.5	55
86	Spectroscopic properties and Judd-Ofelt theory analysis of Dy3+ doped oxyfluoride silicate glass. Journal of Applied Physics, 2007, 101, 043110.	2.5	61
87	Demonstration of microfiber knot laser. Applied Physics Letters, 2006, 89, 143513.	3.3	138
88	Intense frequency upconversion luminescence in Yb3+/Tm3+-codoped oxychloride germanate glasses. Journal of Materials Science, 2005, 40, 5675-5678.	3.7	6
89	Effect of Processing Parameters on the Optical Properties of TiO2/Ormosil Planar Waveguide. Journal of Sol-Gel Science and Technology, 2005, 34, 71-76.	2.4	8
90	Thermal analysis and optical transition of Yb3+, Er3+ co-doped lead–germanium–tellurite glasses. Journal of Materials Research, 2004, 19, 1630-1637.	2.6	7

#	Article	lF	CITATIONS
91	Spectroscopic Properties of Er3+-Doped Na2O-La2O3-Al2O3-SiO2 Glasses. Journal of the American Ceramic Society, 2004, 87, 2228-2231.	3.8	8
92	Frequency upconversion properties of Yb ³⁺ -Er ³⁺ co-doped oxyfluoride germanate glass. Journal of Materials Science, 2004, 39, 2223-2225.	3.7	16
93	Thermal stability and optical transition of Er ³⁺ in sodium-lead-germanate glasses. Journal of Materials Science, 2004, 39, 3641-3646.	3.7	6
94	Optical transitions and upconversion luminescence of Er3+/Yb3+-codoped halide modified tellurite glasses. Journal of Applied Physics, 2004, 95, 3020-3026.	2.5	82
95	Fluorescence quenching in Er3+ doped tellurite glass due to the introduction of BO3/2. Journal of Materials Science Letters, 2003, 22, 575-576.	0.5	5
96	Spectroscopic properties and thermal stability of erbium-doped bismuth-based glass for optical amplifier. Journal of Applied Physics, 2003, 93, 977-983.	2.5	170
97	Thermodynamic study on elimination of platinum inclusions in phosphate laser glasses for inertial confinement fusion applications. Science Bulletin, 1999, 44, 664-668.	1.7	20
98	Phase diagram structure model of glass. Science in China Series D: Earth Sciences, 1997, 40, 1-11.	0.9	4
99	Radiationâ€induced darkening and its suppression methods in Yb ³⁺ â€doped silica fiber core glasses. International Journal of Applied Glass Science, 0, , .	2.0	1
100	Laser-Induced damage of Anti-Resonant Hollow-Core Fiber for High-Power Laser Delivery at 1 μm. Optics Letters, 0, , .	3.3	5