
Steven S Perakis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7517794/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Global Biogeochemical Cycles, 1999, 13, 623-645.	1.9	811
2	Nitrogen loss from unpolluted South American forests mainly via dissolved organic compounds. Nature, 2002, 415, 416-419.	13.7	582
3	FLUXES AND FATES OF NITROGEN IN SOIL OF AN UNPOLLUTED OLD-GROWTH TEMPERATE FOREST, SOUTHERN CHILE. Ecology, 2001, 82, 2245-2260.	1.5	177
4	Coupled Nitrogen and Calcium Cycles in Forests of the Oregon Coast Range. Ecosystems, 2006, 9, 63-74.	1.6	100
5	Reconstructing Disturbances and Their Biogeochemical Consequences over Multiple Timescales. BioScience, 2014, 64, 105-116.	2.2	80
6	Biogeochemistry of a temperate forest nitrogen gradient. Ecology, 2011, 92, 1481-1491.	1.5	79
7	NITROGEN RETENTION ACROSS A GRADIENT OF15N ADDITIONS TO AN UNPOLLUTED TEMPERATE FOREST SOIL IN CHILE. Ecology, 2005, 86, 96-105.	1.5	68
8	Ecosystem N Distribution and δ15N during a Century of Forest Regrowth after Agricultural Abandonment. Ecosystems, 2007, 10, 1197-1208.	1.6	63
9	Growth and survival relationships of 71 tree species with nitrogen and sulfur deposition across the conterminous U.S PLoS ONE, 2018, 13, e0205296.	1.1	54
10	Nitrate in watersheds: Straight from soils to streams?. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 291-302.	1.3	53
11	Soil organic matter regulates molybdenum storage and mobility in forests. Biogeochemistry, 2015, 125, 167-183.	1.7	48
12	Mechanisms of nitrogen deposition effects on temperate forest lichens and trees. Ecosphere, 2017, 8, e01717.	1.0	48
13	Forest calcium depletion and biotic retention along a soil nitrogen gradient. Ecological Applications, 2013, 23, 1947-1961.	1.8	47
14	δ15N constraints on long-term nitrogen balances in temperate forests. Oecologia, 2011, 167, 793-807.	0.9	45
15	Combined use of isotopic and hydrometric data to conceptualize ecohydrological processes in a highâ€elevation tropical ecosystem. Hydrological Processes, 2016, 30, 2930-2947.	1.1	45
16	Nitrogen-fixing red alder trees tap rock-derived nutrients. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5009-5014.	3.3	44
17	Intraspecific variability and reaction norms of forest understorey plant species traits. Functional Ecology, 2017, 31, 1881-1893.	1.7	42
18	Regional constraints to biological nitrogen fixation in postâ€fire forest communities. Ecology, 2013, 94, 739-750.	1.5	39

STEVEN S PERAKIS

#	Article	IF	CITATIONS
19	Nutrient feedbacks to soil heterotrophic nitrogen fixation in forests. Biogeochemistry, 2017, 134, 41-55.	1.7	39
20	TERRESTRIAL C SEQUESTRATION AT ELEVATED CO2AND TEMPERATURE: THE ROLE OF DISSOLVED ORGANIC N LOSS. , 2005, 15, 71-86.		38
21	Interannual variation of carbon fluxes from three contrasting evergreen forests: the role of forest dynamics and climate. Ecology, 2009, 90, 2711-2723.	1.5	37
22	Calcium oxalate contribution to calcium cycling in forests of contrasting nutrient status. Forest Ecology and Management, 2014, 334, 64-73.	1.4	37
23	Decomposition of heterogeneous organic matter and its long-term stabilization in soils. Ecological Monographs, 2011, 81, 619-634.	2.4	35
24	Decomposition drives convergence of forest litter nutrient stoichiometry following phosphorus addition. Plant and Soil, 2016, 406, 1-14.	1.8	35
25	Nitrogen enrichment regulates calcium sources in forests. Global Change Biology, 2016, 22, 4067-4079.	4.2	34
26	Interactions of tissue and fertilizer nitrogen on decomposition dynamics of lignin-rich conifer litter. Ecosphere, 2012, 3, art54.	1.0	33
27	Disturbance and Topography Shape Nitrogen Availability and δ15N over Long-Term Forest Succession. Ecosystems, 2015, 18, 573-588.	1.6	31
28	Three-year growth response of young Douglas-fir to nitrogen, calcium, phosphorus, and blended fertilizers in Oregon and Washington. Forest Ecology and Management, 2014, 327, 178-188.	1.4	30
29	Nutrient limitation, hydrology and watershed nitrogen loss. Hydrological Processes, 2002, 16, 3507-3511.	1.1	29
30	Decomposition and nitrogen dynamics of 15N-labeled leaf, root, and twig litter in temperate coniferous forests. Oecologia, 2013, 173, 1563-1573.	0.9	28
31	Nitrogen dynamics across silvicultural canopy gaps in young forests of western Oregon. Forest Ecology and Management, 2009, 258, 273-287.	1.4	25
32	Frequent burning causes large losses of carbon from deep soil layers in a temperate savanna. Journal of Ecology, 2020, 108, 1426-1441.	1.9	23
33	Climate-Mediated Changes to Linked Terrestrial and Marine Ecosystems across the Northeast Pacific Coastal Temperate Rainforest Margin. BioScience, 2021, 71, 581-595.	2.2	23
34	A Framework to Assess Biogeochemical Response to Ecosystem Disturbance Using Nutrient Partitioning Ratios. Ecosystems, 2016, 19, 387-395.	1.6	22
35	N2-Fixing Red Alder Indirectly Accelerates Ecosystem Nitrogen Cycling. Ecosystems, 2012, 15, 1182-1193.	1.6	21
36	Riparian litter inputs to streams in the central Oregon Coast Range. Freshwater Science, 2013, 32, 343-358.	0.9	21

STEVEN S PERAKIS

#	Article	IF	CITATIONS
37	State factor relationships of dissolved organic carbon and nitrogen losses from unpolluted temperate forest watersheds. Journal of Geophysical Research, 2007, 112, .	3.3	20
38	Trait integration and functional differentiation among coâ€existing plant species. American Journal of Botany, 2020, 107, 628-638.	0.8	20
39	A roadmap for sampling and scaling biological nitrogen fixation in terrestrial ecosystems. Methods in Ecology and Evolution, 2021, 12, 1122-1137.	2.2	20
40	A Spatially Explicit, Empirical Estimate of Treeâ€Based Biological Nitrogen Fixation in Forests of the United States. Global Biogeochemical Cycles, 2020, 34, e2019GB006241.	1.9	19
41	Contribution of Calcium Oxalate to Soil-Exchangeable Calcium. Soil Science, 2013, 178, 671-678.	0.9	18
42	Tree species and soil nutrient profiles in old-growth forests of the Oregon Coast Range. Canadian Journal of Forest Research, 2011, 41, 195-210.	0.8	17
43	Soil fluxes of methane, nitrous oxide, and nitric oxide from aggrading forests in coastal Oregon. Soil Biology and Biochemistry, 2014, 76, 268-277.	4.2	16
44	Response of the nitrogen-fixing lichenLobaria pulmonariato phosphorus, molybdenum, and vanadium. Ecosphere, 2015, 6, art155.	1.0	16
45	Soil Organic Matter Stability in Intensively Managed Ponderosa Pine Stands in California. Soil Science Society of America Journal, 2010, 74, 979-992.	1.2	14
46	Complementary Models of Tree Species–Soil Relationships in Old-Growth Temperate Forests. Ecosystems, 2011, 14, 248-260.	1.6	11
47	Yield Responses of Ruderal Plants to Sucrose in Invasiveâ€Dominated Sagebrush Steppe of the Northern Great Basin. Restoration Ecology, 2010, 18, 304-312.	1.4	10
48	Riparian Soil Development Linked to Forest Succession Above and Below Dams Along the Elwha River, Washington, USA. Ecosystems, 2017, 20, 104-129.	1.6	7
49	Nitrogen limitation, 15N tracer retention, and growth response in intact and Bromus tectorum-invaded Artemisia tridentata ssp. wyomingensis communities. Oecologia, 2013, 171, 1013-1023.	0.9	6
50	Riparian soil nitrogen cycling and isotopic enrichment in response to a longâ€ŧerm salmon carcass manipulation experiment. Ecosphere, 2019, 10, e02958.	1.0	6
51	N supply mediates the radiative balance of N ₂ O emissions and CO ₂ sequestration driven by Nâ€fixing vs. nonâ€fixing trees. Ecology, 2021, 102, e03414.	1.5	6
52	Nutrient Limitation of Native and Invasive N2-Fixing Plants in Northwest Prairies. PLoS ONE, 2013, 8, e84593.	1.1	5
53	FLUXES AND FATES OF NITROGEN IN SOIL OF AN UNPOLLUTED OLD-GROWTH TEMPERATE FOREST, SOUTHERN CHILE. , 2001, 82, 2245.		4
54	Reply to Lambers et al.: How does nitrogen-fixing red alder eat rocks?. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 201906596.	3.3	3

#	Article	IF	CITATIONS
55	Decadal-scale decoupling of soil phosphorus and molybdenum cycles by temperate nitrogen-fixing trees. Biogeochemistry, 2020, 149, 355-371.	1.7	3
56	The Potential Utility of Stable Isotopes for Food Web Analysis in Douglas-Fir and Red Alder Riparian Forests of Western Oregon. Northwest Science, 2009, 83, 315-324.	0.1	2
57	Reply to Krishna et al.: Resolving age-related changes in nitrogen fixation and mineral weathering by Alnus tree species. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19789-19790.	3.3	0

58 Climatic Aridity Shapes Post-Fire Interactions between Ceanothus spp. and Douglas-Fir (Pseudotsuga) Tj ETQq0 0 0 rgBT /Overlock 10 Tr