Claudio Gabriel Lima-Junior

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/751598/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Morita–Baylis–Hillman adducts derived from thymol: synthesis, in silico studies and biological activity against Giardia lamblia. Molecular Diversity, 2022, 26, 1969-1982.	3.9	1
2	Mixed-Metal Cu-Mn iminodiacetate coordination polymer as heterogeneous catalyst for Morita-Baylis-Hillman reactions. Journal of Molecular Structure, 2022, 1263, 133133.	3.6	5
3	Copper and copper-manganese 1D coordination polymers: Synthesis optimization, crystal structure and preliminary studies as catalysts for Baylis–Hillman reactions. Inorganica Chimica Acta, 2021, 514, 119985.	2.4	3
4	Morita-Baylis-Hillman Adduct 2-(3-Hydroxy-2-oxoindolin-3-yl)acrylonitrile (ISACN) Modulates Inflammatory Process In vitro and In vivo. Inflammation, 2021, 44, 899-907.	3.8	4
5	Microwaveâ€assisted synthesis and antimicrobial activity of novel spiro 1,3,4â€ŧhiadiazolines from isatin derivatives. Journal of Heterocyclic Chemistry, 2021, 58, 766-776.	2.6	10
6	Synthesis, anti-proliferative activity, theoretical and 1H NMR experimental studies of Morita–Baylis–Hillman adducts from isatin derivatives. Molecular Diversity, 2020, 24, 265-281.	3.9	12
7	Biological activity of Morita-Baylis-Hillman adduct homodimers in L. infantum and L. amazonensis: anti-Leishmania activity and cytotoxicity. Parasitology Research, 2019, 118, 3067-3076.	1.6	7
8	Synthesis and structural characterization by NMR and X-ray of new Morita-Baylis-Hillman adducts derived from 7-chloroquinoline. Journal of Molecular Structure, 2017, 1133, 358-368.	3.6	1
9	Morita-Baylis-Hillman Adducts Display Anti-Inflammatory Effects by Modulating Inflammatory Mediator Expression in RAW264.7 Cells. Mediators of Inflammation, 2017, 2017, 1-9.	3.0	4
10	Synthesis of 16 New Hybrids from Tetrahydropyrans Derivatives and MoritaË—BaylisË—Hillman Adducts: In Vitro Screening against Leishmania donovani. Molecules, 2017, 22, 207.	3.8	8
11	Synthesis and In Vitro Anti Leishmania amazonensis Biological Screening of Morita-Baylis-Hillman Adducts Prepared from Eugenol, Thymol and Carvacrol. Molecules, 2016, 21, 1483.	3.8	19
12	Synthesis and activity of novel homodimers of Morita–Baylis–Hillman adducts against Leishmania donovani: A twin drug approach. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 4523-4526.	2.2	19
13	Synthesis, Cytotoxic Activity on Leukemia Cell Lines and Quantitative Structure-Activity Relationships (QSAR) Studies of Morita-Baylis-Hillman Adducts. Medicinal Chemistry, 2016, 12, 602-612.	1.5	10
14	The Morita-Baylis-Hillman Reaction: Advances and Contributions from Brazilian Chemistry. Current Organic Synthesis, 2015, 12, 830-852.	1.3	20
15	Electrochemical and computational studies, in protic medium, of Morita-Baylis-Hillman adducts and correlation with leishmanicidal activity. Electrochimica Acta, 2014, 140, 557-563.	5.2	8
16	Trypanosoma cruzi Cell Death Induced by the Morita-Baylis-Hillman Adduct 3-Hydroxy-2-Methylene-3-(4-Nitrophenylpropanenitrile). PLoS ONE, 2014, 9, e93936.	2.5	35
17	Morita–Baylis–Hillman adducts: Biological activities and potentialities to the discovery of new cheaper drugs. Bioorganic and Medicinal Chemistry, 2012, 20, 3954-3971.	3.0	105
18	Correlation between electrochemical and theoretical studies on the leishmanicidal activity of twelve Morita-Baylis-Hillman adducts, Journal of the Brazilian Chemical Society, 2012, 23, 894-904	0.6	14

#	Article	IF	CITATIONS
19	Morita-Baylis-Hillman Reaction with 7-Chloroquinoline Derivatives‑New Compounds with Potential Anticancer Activity. Journal of the Brazilian Chemical Society, 0, , .	0.6	0