Zhonghao Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7515576/publications.pdf

Version: 2024-02-01

66343 5,584 123 42 citations h-index papers

g-index 124 124 124 7708 docs citations times ranked citing authors all docs

91884

69

#	Article	IF	CITATIONS
1	Deep eutectic solvent strategy enables an octahedral Ni–Co precursor for creating high-performance NiCo2O4 catalyst toward oxygen evolution reaction. Green Energy and Environment, 2022, 7, 1217-1227.	8.7	13
2	Application of metal chalcogenide-based anodic electrocatalyst toward substituting oxygen evolution reaction in water splitting. Current Opinion in Electrochemistry, 2022, 33, 100963.	4.8	15
3	Mn-Doped Bi ₂ O ₃ Nanosheets from a Deep Eutectic Solvent toward Enhanced Electrocatalytic N ₂ Reduction. ACS Sustainable Chemistry and Engineering, 2022, 10, 6766-6774.	6.7	15
4	Phosphorus vacancy-engineered Ce-doped CoP nanosheets for the electrocatalytic oxidation of 5-hydroxymethylfurfural. Chemical Communications, 2022, 58, 7817-7820.	4.1	19
5	An injectable hydrogel using an immunomodulating gelator for amplified tumor immunotherapy by blocking the arginase pathway. Acta Biomaterialia, 2021, 124, 179-190.	8.3	115
6	A Checkpointâ€Regulatable Immune Niche Created by Injectable Hydrogel for Tumor Therapy. Advanced Functional Materials, 2021, 31, 2104630.	14.9	65
7	Regeneration of porous Fe3O4 nanosheets from deep eutectic solvent for high-performance electrocatalytic nitrogen reduction. Journal of Colloid and Interface Science, 2021, 602, 64-72.	9.4	25
8	Engineering an Fe ₂ O ₃ /FeS hybrid catalyst from a deep eutectic solvent for highly efficient electrocatalytic N ₂ fixation. Chemical Communications, 2021, 57, 6688-6691.	4.1	14
9	Deep Eutectic Solventâ€Mediated Construction of Oxygen Vacancyâ€Rich Feâ€Based Electrocatalysts for Efficient Oxygen Evolution Reaction. Advanced Sustainable Systems, 2020, 4, 2000038.	5.3	13
10	Site-specific MOF-based immunotherapeutic nanoplatforms via synergistic tumor cells-targeted treatment and dendritic cells-targeted immunomodulation. Biomaterials, 2020, 245, 119983.	11.4	94
11	Reactive Ionic Liquid Enables the Construction of 3D Rh Particles with Nanowire Subunits for Electrocatalytic Nitrogen Reduction. Chemistry - an Asian Journal, 2020, 15, 1081-1087.	3.3	25
12	A new phosphonium-based ionic liquid to synthesize nickel metaphosphate for hydrogen evolution reaction. Nanotechnology, 2020, 31, 505402.	2.6	14
13	Cold to Hot: Rational Design of a Minimalist Multifunctional Photo-immunotherapy Nanoplatform toward Boosting Immunotherapy Capability. ACS Applied Materials & Samp; Interfaces, 2019, 11, 32633-32646.	8.0	77
14	A Three-in-One Immunotherapy Nanoweapon via Cascade-Amplifying Cancer-Immunity Cycle against Tumor Metastasis, Relapse, and Postsurgical Regrowth. Nano Letters, 2019, 19, 6647-6657.	9.1	92
15	Hydratedâ€Metalâ€Halideâ€Based Deepâ€Eutecticâ€Solventâ€Mediated NiFe Layered Double Hydroxide: An Exc Electrocatalyst for Urea Electrolysis and Water Splitting. Chemistry - an Asian Journal, 2019, 14, 2995-3002.	cellent 3.3	19
16	Task-Specific Design of Immune-Augmented Nanoplatform to Enable High-Efficiency Tumor Immunotherapy. ACS Applied Materials & Samp; Interfaces, 2019, 11, 42904-42916.	8.0	37
17	Redox-Sensitive Prodrug Molecules Meet Graphene Oxide: An Efficient Graphene Oxide-Based Nanovehicle toward Cancer Therapy. ACS Biomaterials Science and Engineering, 2019, 5, 1384-1391.	5.2	25
18	Oxygen vacancy-engineered Fe ₂ O ₃ nanocubes <i>via</i> a task-specific ionic liquid for electrocatalytic N ₂ fixation. Chemical Communications, 2019, 55, 7370-7373.	4.1	67

#	Article	IF	Citations
19	Tailored graphene oxide-doxorubicin nanovehicles via near-infrared dye-lactobionic acid conjugates for chemo-photothermal therapy. Journal of Colloid and Interface Science, 2019, 545, 172-183.	9.4	40
20	All-In-One Deep Eutectic Solvent toward Cobalt-Based Electrocatalyst for Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 8964-8971.	6.7	22
21	Deep Eutectic Solvent-Mediated Hierarchically Structured Fe-Based Organic–Inorganic Hybrid Catalyst for Oxygen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 3343-3351.	5.1	23
22	A versatile strategy to create an active tumor-targeted chemo-photothermal therapy nanoplatform: A case of an IR-780 derivative co-assembled with camptothecin prodrug. Acta Biomaterialia, 2019, 84, 356-366.	8.3	30
23	Vanadiumâ€Doped WS ₂ Nanosheets Grown on Carbon Cloth as a Highly Efficient Electrocatalyst for the Hydrogen Evolution Reaction. Chemistry - an Asian Journal, 2018, 13, 1438-1446.	3.3	49
24	Rational design of a new cytarabine-based prodrug for highly efficient oral delivery of cytarabine. RSC Advances, 2018, 8, 13103-13111.	3.6	10
25	Rational Design of an Amphiphilic Chlorambucil Prodrug Realizing Self-Assembled Micelles for Efficient Anticancer Therapy. ACS Biomaterials Science and Engineering, 2018, 4, 973-980.	5.2	20
26	Phosphonium-Based Ionic Liquid: A New Phosphorus Source toward Microwave-Driven Synthesis of Nickel Phosphide for Efficient Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 1468-1477.	6.7	50
27	Amphiphilic prodrug-decorated graphene oxide as a multi-functional drug delivery system for efficient cancer therapy. Materials Science and Engineering C, 2018, 89, 15-24.	7.3	42
28	Reduction-sensitive mixed micelles assembled from amphiphilic prodrugs for self-codelivery of DOX and DTX with synergistic cancer therapy. Colloids and Surfaces B: Biointerfaces, 2018, 161, 449-456.	5.0	22
29	Rational Design of IR820―and Ce6â€Based Versatile Micelle for Single NIR Laser–Induced Imaging and Dualâ€Modal Phototherapy. Small, 2018, 14, e1802994.	10.0	81
30	lonic-Liquid-Assisted One-Step Synthesis of CoO Nanosheets as Electrocatalysts for Oxygen Evolution Reaction. ACS Omega, 2018, 3, 10092-10098.	3.5	21
31	CuS@MOF-Based Well-Designed Quercetin Delivery System for Chemo–Photothermal Therapy. ACS Applied Materials & Delivery System for Chemo–Photothermal Therapy. ACS Applied Materials & Delivery System for Chemo–Photothermal Therapy. ACS Applied Materials & Delivery System for Chemo–Photothermal Therapy. ACS Applied Materials & Delivery System for Chemo–Photothermal Therapy. ACS Applied Materials & Delivery System for Chemo–Photothermal Therapy. ACS Applied Materials & Delivery System for Chemo–Photothermal Therapy. ACS Applied Materials & Delivery System for Chemo–Photothermal Therapy. ACS Applied Materials & Delivery System for Chemo–Photothermal Therapy. ACS Applied Materials & Delivery System for Chemo–Photothermal Therapy. ACS Applied Materials & Delivery System for Chemo—Photothermal Therapy. ACS Applied Materials & Delivery System for Chemo†"Photothermal"Photothermal Therapy. ACS Applied Materials & Delivery System for Chemo†"Photothermal"Photothermal Therapy. ACS Applied Materials & Delivery System for Chemo†"Photothermal"Photothermal Photothermal	8.0	138
32	A Versatile Prodrug Strategy to In Situ Encapsulate Drugs in MOF Nanocarriers: A Case of Cytarabineâ€IR820 Prodrug Encapsulated ZIFâ€8 toward Chemoâ€Photothermal Therapy. Advanced Functional Materials, 2018, 28, 1802830.	14.9	177
33	Controllable 1D and 2D Cobalt Oxide and Cobalt Selenide Nanostructures as Highly Efficient Electrocatalysts for the Oxygen Evolution Reaction. Chemistry - an Asian Journal, 2018, 13, 2700-2707.	3.3	20
34	pH- and Enzyme-Sensitive IR820–Paclitaxel Conjugate Self-Assembled Nanovehicles for Near-Infrared Fluorescence Imaging-Guided Chemo–Photothermal Therapy. ACS Applied Materials & Diterfaces, 2018, 10, 30092-30102.	8.0	74
35	Ionic Liquid as Reaction Medium for Synthesis of Hierarchically Structured One-Dimensional MoO ₂ for Efficient Hydrogen Evolution. ACS Applied Materials & Interfaces, 2017, 9, 7217-7223.	8.0	91
36	Precise ratiometric loading of PTX and DOX based on redox-sensitive mixed micelles for cancer therapy. Colloids and Surfaces B: Biointerfaces, 2017, 155, 51-60.	5.0	56

#	Article	IF	Citations
37	Folic acid-grafted bovine serum albumin decorated graphene oxide: An efficient drug carrier for targeted cancer therapy. Journal of Colloid and Interface Science, 2017, 490, 598-607.	9.4	115
38	Rational Design of Metal Organic Framework Nanocarrier-Based Codelivery System of Doxorubicin Hydrochloride/Verapamil Hydrochloride for Overcoming Multidrug Resistance with Efficient Targeted Cancer Therapy. ACS Applied Materials & Samp; Interfaces, 2017, 9, 19687-19697.	8.0	202
39	Co-delivery of docetaxel and verapamil by reduction-sensitive PEG-PLGA-SS-DTX conjugate micelles to reverse the multi-drug resistance of breast cancer. Colloids and Surfaces B: Biointerfaces, 2017, 151, 119-127.	5. 0	68
40	Rational Design of a New Selfâ€Codelivery System from Redoxâ€Sensitive Camptothecin–Cytarabine Conjugate Assembly for Effectively Synergistic Anticancer Therapy. Advanced Healthcare Materials, 2017, 6, 1700829.	7.6	66
41	Nanoassemblies from amphiphilic cytarabine prodrug for leukemia targeted therapy. Journal of Colloid and Interface Science, 2017, 487, 239-249.	9.4	34
42	Advances in the conversion of glucose and cellulose to 5-hydroxymethylfurfural over heterogeneous catalysts. RSC Advances, 2016, 6, 98874-98892.	3.6	106
43	Fine regulation of cellulose dissolution and regeneration by low pressure CO ₂ in DMSO/organic base: dissolution behavior and mechanism. Physical Chemistry Chemical Physics, 2016, 18, 32772-32779.	2.8	28
44	A green synthesis of "naked―Pt and PtPd catalysts for highly efficient methanol electrooxidation. RSC Advances, 2016, 6, 56083-56090.	3.6	16
45	A Green Synthesis of Nanosheetâ€Constructed Pd Particles in an Ionic Liquid and Their Superior Electrocatalytic Performance. ChemPhysChem, 2015, 16, 3865-3870.	2.1	8
46	Spiral assembly of amphiphilic cytarabine prodrug assisted by probe sonication: Enhanced therapy index for leukemia. Colloids and Surfaces B: Biointerfaces, 2015, 136, 918-927.	5.0	16
47	Ionic liquid-mediated synthesis of unique PtPd bimetallic particles with tiny subunits for efficient electrocatalytic and catalytic applications. RSC Advances, 2015, 5, 57640-57646.	3.6	14
48	CO ₂ as a regulator for the controllable preparation of highly dispersed chitosan-supported Pd catalysts in ionic liquids. Chemical Communications, 2015, 51, 10811-10814.	4.1	18
49	Green synthesis of luminescent carbon dots and carbon-coated metal particles: Two birds with one stone. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 485, 34-41.	4.7	15
50	Ionic liquid-assisted synthesis of morphology-controlled TiO2 particles with efficient photocatalytic activity. RSC Advances, 2015, 5, 81108-81114.	3.6	13
51	Catanionic drug-derivative nano-objects constructed by chlorambucil and its derivative for efficient leukaemia therapy. Colloids and Surfaces B: Biointerfaces, 2015, 136, 1081-1088.	5.0	7
52	Green fabricated reduced graphene oxide: evaluation of its application as nano-carrier for pH-sensitive drug delivery. International Journal of Pharmaceutics, 2015, 496, 984-992.	5.2	48
53	Preparation, properties and in vivo pharmacokinetic study of drug vesicles composed of diphenhydramine and AOT. RSC Advances, 2014, 4, 62698-62707.	3.6	15
54	Ionic liquid-assisted synthesis of unusual Pd particles with enhanced electrocatalytic performance for ethanol and methanol oxidation. CrystEngComm, 2014, 16, 4038.	2.6	11

#	Article	IF	CITATIONS
55	lonic Liquid-Assisted Synthesis of Au–Pt Bimetallic Particles for Enhanced Methanol Electrooxidation. ACS Sustainable Chemistry and Engineering, 2014, 2, 533-536.	6.7	24
56	Folate-conjugated hybrid SBA-15 particles for targeted anticancer drug delivery. Journal of Colloid and Interface Science, 2013, 395, 31-39.	9.4	50
57	Pharmaceutically Active Ionic Liquid Selfâ€Assembled Vesicles for the Application as an Efficient Drug Delivery System. ChemPhysChem, 2013, 14, 3454-3457.	2.1	39
58	In(OH) ₃ particles from an ionic liquid precursor and their conversion to porous In ₂ O ₃ particles for enhanced gas sensing properties. CrystEngComm, 2013, 15, 1706-1714.	2.6	22
59	lonic liquid-assisted synthesis of WO3 particles with enhanced gas sensing properties. Journal of Materials Chemistry A, 2013, 1, 15377.	10.3	40
60	lonic Liquid Assisted Synthesis of Au–Pd Bimetallic Particles with Enhanced Electrocatalytic Activity. Chemistry - A European Journal, 2013, 19, 6005-6013.	3.3	55
61	Formation of drug/surfactant catanionic vesicles and their application in sustained drug release. International Journal of Pharmaceutics, 2012, 436, 806-814.	5.2	63
62	lonic liquid-assisted synthesis of SnO2 particles with nanorod subunits for enhanced gas-sensing properties. CrystEngComm, 2012, 14, 3404.	2.6	25
63	Gold Particle Synthesis via Reduction of Gold Salt in the Ionic Liquid 1-Butyl-3-Methylimidazolium Tetrafluoroborate Aqueous Solution. Journal of Nanoscience and Nanotechnology, 2012, 12, 4635-4643.	0.9	1
64	Synthesis and gas-sensing properties of ZnO particles from an ionic liquid precursor. RSC Advances, 2012, 2, 3049.	3.6	25
65	Catanionic vesicles from an amphiphilic prodrug molecule: a new concept for drug delivery systems. RSC Advances, 2012, 2, 6905.	3.6	36
66	CuO Nanoparticles from the Strongly Hydrated Ionic Liquid Precursor (ILP) Tetrabutylammonium Hydroxide: Evaluation of the Ethanol Sensing Activity. ACS Applied Materials & Samp; Interfaces, 2012, 4, 791-795.	8.0	52
67	Study on a parameter to express glassâ€forming relationship of phenolic–novolac resin. Polymer Composites, 2012, 33, 52-57.	4.6	3
68	lonic liquid-assisted synthesis of carbon nanotube/platinum nanocomposites. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	3
69	Huperzine A–phospholipid complex-loaded biodegradable thermosensitive polymer gel for controlled drug release. International Journal of Pharmaceutics, 2012, 433, 102-111.	5.2	47
70	lonic liquid precursor-based synthesis of CuO nanoplates for gas sensing and amperometric sensing applications. Sensors and Actuators B: Chemical, 2012, 168, 156-164.	7.8	56
71	Synthesis of ZnO particles on zinc foil in ionic-liquid precursors. CrystEngComm, 2011, 13, 2656.	2.6	17
72	Sustained release of 5-fluorouracil by incorporation into sodium carboxymethylcellulose sub-micron fibers. International Journal of Pharmaceutics, 2011, 419, 240-246.	5.2	35

#	Article	lF	CITATIONS
73	Metformin Hydrochloride-Loaded Poly(vinyl alcohol) Composites as Drug Delivery Systems. Journal of Nanoscience and Nanotechnology, 2011, 11, 8621-8627.	0.9	3
74	Characterization and Aggregation Behaviors of Mixed DDAB/SDS Solution With and Without Poly(4-styrenesulfonic Acid-Co-Maleic Acid) Sodium. Journal of Dispersion Science and Technology, 2011, 32, 1624-1633.	2.4	3
75	lonic liquid-assisted synthesis of silica particles and their application in drug release. Materials Letters, 2010, 64, 2509-2512.	2.6	24
76	Microwave-assistant synthesis of inorganic particles from ionic liquid precursors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 360, 6-12.	4.7	15
77	Fast synthesis of nanostructured ZnO particles from an ionic liquid precursor tetrabutylammonium hydroxide. Current Opinion in Solid State and Materials Science, 2010, 14, 75-82.	11.5	23
78	Strong anion effects on gold nanoparticle formation in ionic liquids. Journal of Materials Chemistry, 2010, 20, 1332-1339.	6.7	63
79	Cellulose/Gold Nanocrystal Hybrids via an Ionic Liquid/Aqueous Precipitation Route. Molecules, 2009, 14, 4682-4688.	3.8	16
80	Unusual nanostructured ZnO particles from an ionic liquid precursor. Chemical Communications, 2009, , 1258 .	4.1	37
81	Morphology-controlled ZnO particles from an ionic liquid precursor. CrystEngComm, 2009, 11, 2683.	2.6	21
82	ZnO nanostructure construction on zinc foil: the concept from an ionic liquid precursor aqueous solution. Chemical Communications, 2009, , 6273.	4.1	41
83	Single-Crystalline Gold Nanoplates from a Commercial Gold Plating Solution. Journal of Nanoscience and Nanotechnology, 2009, 9, 2045-2050.	0.9	0
84	Uniform Metal (Hydr)Oxide Particles from Water/Ionic Liquid Precursor (ILP) Mixtures. Chemistry - A European Journal, 2008, 14, 8409-8417.	3.3	37
85	Hollow Zinc Oxide Mesocrystals from an Ionic Liquid Precursor (ILP). Advanced Materials, 2008, 20, 1279-1285.	21.0	126
86	Gold microcrystal synthesis via reduction of HAuCl4 by cellulose in the ionic liquid 1-butyl-3-methyl imidazolium chloride. Journal of Materials Chemistry, 2008, 18, 1008.	6.7	122
87	lonic liquids for synthesis of inorganic nanomaterials. Current Opinion in Solid State and Materials Science, 2008, 12, 1-8.	11.5	218
88	Room Temperature ZnO Mesocrystal Formation in the Hydrated Ionic Liquid Precursor (ILP) Tetrabutylammonium Hydroxide. Crystal Growth and Design, 2008, 8, 4526-4532.	3.0	57
89	Lessons from a "Failed―Experiment: Zinc Silicates with Complex Morphology by Reaction of Zinc Acetate, the Ionic Liquid Precursor (ILP) Tetrabutylammonium Hydroxide (TBAH), and Glass. Materials, 2008, 1, 3-24.	2.9	56
90	Inorganic materials from ionic liquids. Dalton Transactions, 2007, , 723-727.	3.3	279

#	Article	IF	CITATIONS
91	Effect of compressed CO2on the chloroperoxidase catalyzed halogenation of 1,3-dihydroxybenzene in reverse micelles. Physical Chemistry Chemical Physics, 2006, 8, 877-881.	2.8	13
92	Preparation of silica microrods with nano-sized pores in ionic liquid microemulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 286, 117-120.	4.7	57
93	Synthesis of cross-linked enzyme aggregates (CLEAs) in CO2-expanded micellar solutions. Colloids and Surfaces B: Biointerfaces, 2006, 48, 72-76.	5.0	25
94	Fluorescence studies on the microenvironments of proteins in CO2-expanded reverse micellar solutions. Journal of Supercritical Fluids, 2006, 38, 103-110.	3.2	3
95	Preparation of silica and TiO2–SiO2 core–shell nanoparticles in water-in-oil microemulsion using compressed CO2 as reactant and antisolvent. Journal of Supercritical Fluids, 2006, 36, 194-201.	3.2	31
96	Solvothermal synthesis of carbon nitrogen nanotubes and nanofibers. Journal of Materials Research, 2006, 21, 1658-1663.	2.6	11
97	Mesoporous TiO2 with wormlike structure synthesized via interfacial surfactant assisted route. Microporous and Mesoporous Materials, 2005, 83, 19-24.	4.4	19
98	Synthesis of mesoporous SrCO3 spheres and hollow CaCO3 spheres in room-temperature ionic liquid. Microporous and Mesoporous Materials, 2005, 83, 145-149.	4.4	74
99	One-pot synthesis of the macroporous polyaniline microspheres and Ag/polyaniline core-shell particles. Microporous and Mesoporous Materials, 2005, 84, 254-260.	4.4	53
100	A simple and inexpensive route to synthesize porous silica microflowers by supercritical CO2. Microporous and Mesoporous Materials, 2005, 87, 10-14.	4.4	13
101	Preparation and self-assembly of nanostructured BaCrO4 from CTAB reverse microemulsions. Materials Chemistry and Physics, 2005, 91, 40-43.	4.0	11
102	Carbon onions synthesized via thermal reduction of glycerin with magnesium. Materials Chemistry and Physics, 2005, 93, 178-180.	4.0	24
103	Preparation of single-crystal copper ferrite nanorods and nanodisks. Materials Research Bulletin, 2005, 40, 928-935.	5.2	51
104	Synthesis of single crystal BaMoO4 nanofibers in CTAB reverse microemulsions. Materials Letters, 2005, 59, 64-68.	2.6	42
105	Carbon nanoflowers synthesized by a reduction–pyrolysis–catalysis route. Materials Letters, 2005, 59, 456-458.	2.6	26
106	Synthesis of LaCO3OH nanowires via a solvothermal process in the mixture of water and room-temperature ionic liquid. Materials Letters, 2005, 59, 963-965.	2.6	35
107	Synthesis of Ag/BSA composite nanospheres from water-in-oil microemulsion using compressed CO2 as antisolvent. Biotechnology and Bioengineering, 2005, 89, 274-279.	3.3	14
108	Ultrasound-Induced Capping of Polystyrene on TiO ₂ Nanoparticles by Precipitation with Compressed CO ₂ as Antisolvent. Journal of Nanoscience and Nanotechnology, 2005, 5, 945-950.	0.9	7

#	Article	IF	Citations
109	TX-100/Water/1-Butyl-3-methylimidazolium Hexafluorophosphate Microemulsions. Langmuir, 2005, 21, 5681-5684.	3.5	300
110	Synthesis of Single-Crystal Gold Nanosheets of Large Size in Ionic Liquids. Journal of Physical Chemistry B, 2005, 109, 14445-14448.	2.6	241
111	Facile Route to Synthesize Multiwalled Carbon Nanotube/Zinc Sulfide Heterostructures:  Optical and Electrical Properties. Journal of Physical Chemistry B, 2005, 109, 12772-12776.	2.6	81
112	Synthesis and characterization of polyether structure carbon nitride. Journal of Materials Research, 2004, 19, 1736-1741.	2.6	21
113	Preparation of polyacrylamide/CdS nanocomposites by a combination of reverse microemulsion and CO2 antisolvent techniques. Colloid and Polymer Science, 2004, 282, 1179-1183.	2.1	7
114	Tautomeric equilibrium of ethyl acetoacetate in compressed CO2+ethanol and CO2+methanol mixtures. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2004, 60, 1055-1059.	3.9	5
115	Hydrogen bonding of acetic acid in CO2 + n-pentane mixed fluids in the critical region. Journal of Supercritical Fluids, 2004, 30, 17-24.	3.2	11
116	Preparation of cadmium sulfide/poly(methyl methacrylate) composites by precipitation with compressed CO2. Journal of Applied Polymer Science, 2004, 94, 1643-1648.	2.6	26
117	Enthalpy of Solution of 1,4-Naphthoquinone in CO2 +n-Pentane in the Critical Region of the Binary Mixture: Mechanism of Solubility Enhancement. Chemistry - A European Journal, 2004, 10, 371-376.	3. 3	8
118	Ultrasound-induced formation of polymer capsules by precipitation with compressed CO2. European Polymer Journal, 2004, 40, 1349-1353.	5 . 4	4
119	Electrochemical reduction of supercritical carbon dioxide in ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate. Journal of Supercritical Fluids, 2004, 32, 287-291.	3.2	58
120	Preparation of polyvinylpyrrolidone-protected Prussian blue nanocomposites in microemulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 243, 63-66.	4.7	39
121	Effect of phase behavior, density, and isothermal compressibility on the constant-volume heat capacity of ethane+n-pentane mixed fluids in different phase regions. Journal of Chemical Thermodynamics, 2003, 35, 2033-2044.	2.0	5
122	Recovery of TiO2 nanoparticles synthesized in reverse micelles by antisolvent CO2. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 227, 45-48.	4.7	16
123	Factors Influencing Oxygen Recombination at the Negative Plate in Valve-Regulated Lead-Acid Batteries. Journal of the Electrochemical Society, 2002, 149, A934.	2.9	9