Sandeep Sheth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/751548/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transient Receptor Potential Channels and Auditory Functions. Antioxidants and Redox Signaling, 2022, 36, 1158-1170.	5.4	9
2	Regulator of G protein signaling 17 represents a novel target for treating cisplatin induced hearing loss. Scientific Reports, 2021, 11, 8116.	3.3	10
3	Review of Ototoxic Drugs and Treatment Strategies for Reducing Hearing Loss. , 2020, , 51-87.		Ο
4	Oral Administration of Caffeine Exacerbates Cisplatin-Induced Hearing Loss. Scientific Reports, 2019, 9, 9571.	3.3	12
5	Targeting Inflammatory Processes Mediated by TRPVI and TNF-α for Treating Noise-Induced Hearing Loss. Frontiers in Cellular Neuroscience, 2019, 13, 444.	3.7	37
6	Capsaicin Protects Against Cisplatin Ototoxicity by Changing the STAT3/STAT1 Ratio and Activating Cannabinoid (CB2) Receptors in the Cochlea. Scientific Reports, 2019, 9, 4131.	3.3	36
7	Trans-Tympanic Drug Delivery for the Treatment of Ototoxicity. Journal of Visualized Experiments, 2018, , .	0.3	10
8	The Contribution of Anti-oxidant and Anti-inflammatory Functions of Adenosine A1 Receptor in Mediating Otoprotection. , 2018, , 149-164.		1
9	The Endocannabinoid/Cannabinoid Receptor 2 System Protects Against Cisplatin-Induced Hearing Loss. Frontiers in Cellular Neuroscience, 2018, 12, 271.	3.7	45
10	Epigallocatechin-3-gallate, a prototypic chemopreventative agent for protection against cisplatin-based ototoxicity. Cell Death and Disease, 2017, 8, e2921-e2921.	6.3	76
11	Mechanisms of Cisplatin-Induced Ototoxicity and Otoprotection. Frontiers in Cellular Neuroscience, 2017, 11, 338.	3.7	239
12	Tonic suppression of PCAT29 by the IL-6 signaling pathway in prostate cancer: Reversal by resveratrol. PLoS ONE, 2017, 12, e0177198.	2.5	38
13	Adenosine A ₁ Receptor Protects Against Cisplatin Ototoxicity by Suppressing the NOX3/STAT1 Inflammatory Pathway in the Cochlea. Journal of Neuroscience, 2016, 36, 3962-3977.	3.6	96
14	Early investigational drugs for hearing loss. Expert Opinion on Investigational Drugs, 2015, 24, 201-217.	4.1	27
15	Adenosine Receptors: Expression, Function and Regulation. International Journal of Molecular Sciences, 2014, 15, 2024-2052.	4.1	277
16	TRPV1: A Potential Drug Target for Treating Various Diseases. Cells, 2014, 3, 517-545.	4.1	115
17	Essential Role of NADPH Oxidase-Dependent Reactive Oxygen Species Generation in Regulating <i>MicroRNA-21</i> Expression and Function in Prostate Cancer. Antioxidants and Redox Signaling, 2013, 19, 1863-1876.	5.4	56
18	Abstract 4084: Resveratrol attenuates prostate cancer growth by inhibiting insulin-like growth		0

factor-1 receptor signaling.. , 2013, , .

SANDEEP SHETH

#	Article	IF	CITATIONS
19	Resveratrol Reduces Prostate Cancer Growth and Metastasis by Inhibiting the Akt/MicroRNA-21 Pathway. PLoS ONE, 2012, 7, e51655.	2.5	184
20	Abstract 1940: Anti-tumor action of adenosine A3 receptor in prostate cancer involves suppression of micro RNA-21. , 2012, , .		0
21	NOX3 NADPH Oxidase Couples Transient Receptor Potential Vanilloid 1 to Signal Transducer and Activator of Transcription 1-Mediated Inflammation and Hearing Loss. Antioxidants and Redox Signaling, 2011, 14, 999-1010.	5.4	78
22	The design and screening of drugs to prevent acquired sensorineural hearing loss. Expert Opinion on Drug Discovery, 2011, 6, 491-505.	5.0	54
23	Abstract 1184: NADPH oxidase-dependent reactive oxygen species generation regulate micro RNA-21 in prostate cancer. , 2011, , .		0
24	Abstract 1152: Micro RNA-21 serves as an essential target for resveratrol's anti-tumor action against metastatic prostate cancer cells. , 2011, , .		0
25	Role of β-arrestin1/ERK MAP kinase pathway in regulating adenosine A ₁ receptor desensitization and recovery. American Journal of Physiology - Cell Physiology, 2010, 298, C56-C65.	4.6	24
26	Targeting Adenosine Receptors for the Treatment of Melanoma. , 0, , .		0