Yafei Guo

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7515117/yafei-guo-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

26 156 19 1,237 h-index g-index citations papers 1,630 163 5.12 3.7 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
156	Solubility determination and thermodynamic modeling in the quaternary system Li2SO4 \blacksquare LiBO2 \blacksquare Li2B4O7 \blacksquare H2O at T = 308.15 K and p = 0.1 MPa. <i>Journal of Chemical Thermodynamics</i> , 2022 , 168, 106729	2.9	2
155	Solid-liquid phase equilibrium and phase diagram of the ternary system (NaNO3I+ICsNO3I+IH2O) and its application for cesium nitrate separation. <i>Journal of Chemical Thermodynamics</i> , 2022 , 165, 10665	i ∂ ·9	2
154	Synthesis of porous fiber-supported lithium ion-sieve adsorbent for lithium recovery from geothermal water. <i>Chemical Engineering Journal</i> , 2022 , 430, 131423	14.7	5
153	Mean Activity Coefficients of NaNO3 and the Mixing Ion-Interaction Parameters in the Ternary System (NaNO3 + CsNO3 + H2O) at 298.15 K by EMF Method. <i>Journal of Chemistry</i> , 2022 , 2022, 1-8	2.3	O
152	Novel layered iron antimony thiostannate adsorbent of K1.61Fe0.04Sb0.03Sn3.1S7 for cesium green recovery from geothermal water. <i>Journal of Cleaner Production</i> , 2022 , 347, 131332	10.3	2
151	Experimental determination and thermodynamic modeling of solidDquid equilibria in the system NaClNa2SO4H3BO3H2O at 323.15K and its application in industry. <i>Journal of Chemical Thermodynamics</i> , 2022 , 170, 106765	2.9	1
150	Volume properties of the ternary systems (LiCll+LiB5O8l+lH2O) and (Li2SO4l+LiB5O8l+lH2O) from 283.15 to 363.15lK and 101.325lkPa. <i>Journal of Chemical Thermodynamics</i> , 2022 , 172, 106814	2.9	1
149	Highly selective and easily regenerated porous fibrous composite of PSF-Na2.1Ni0.05Sn2.95S7 for the sustainable removal of cesium from wastewater. <i>Journal of Hazardous Materials</i> , 2022 , 436, 129188	12.8	1
148	Phase equilibria and phase diagrams for the aqueous ternary system containing potassium, chlorine and metaborate ions at 298.15 and 323.15 K and 101.325 kPa. <i>Journal of Chemical Thermodynamics</i> , 2021 , 106675	2.9	
147	Volumetric Properties for the Aqueous Solution of Yttrium Trichloride at Temperatures from 283.15 to 363.15 K and Ambient Pressure. <i>Journal of Chemistry</i> , 2021 , 2021, 1-11	2.3	
146	Solid[liquid Phase Equilibria of the Ternary System (KBO2 + K2SO4 + H2O) at 288.15, 308.15 K, and 0.1 MPa. <i>Journal of Chemical & Engineering Data</i> , 2021 , 66, 1703-1708	2.8	2
145	Selective recovery of strontium from oilfield water by ion-imprinted alginate microspheres modified with thioglycollic acid. <i>Chemical Engineering Journal</i> , 2021 , 410, 128267	14.7	3
144	Titanium-based ion sieve with enhanced post-separation ability for high performance lithium recovery from geothermal water. <i>Chemical Engineering Journal</i> , 2021 , 410, 128320	14.7	8
143	Solid-liquid phase equilibria of the quinary system containing sodium, potassium, lithium, chloride and pentaborate ions at 298.15 K and 101.325 kPa. <i>Journal of Chemical Thermodynamics</i> , 2021 , 157, 106	399	
142	Separation of magnesium from high Mg/Li ratio brine by extraction with an organic system containing ionic liquid. <i>Chemical Engineering Science</i> , 2021 , 229, 116019	4.4	6
141	Solubility determination and thermodynamic modelling of solid-liquid equilibria in the (NaClI-INaBO2I-INa2B4O7I-IH2O) system at 298.15IK. <i>Journal of Chemical Thermodynamics</i> , 2021 , 152, 106283	2.9	3
140	Prussian blue analogs-based layered double hydroxides for highly efficient Cs removal from wastewater. <i>Journal of Hazardous Materials</i> , 2021 , 410, 124608	12.8	6

139	Solid[liquid Phase Equilibria of the Reciprocal Quaternary System (Li + Na + Cl + BO2 + H2O) at 288.15 K and 0.1 MPa. <i>Journal of Chemical & Engineering Data</i> , 2021 , 66, 761-766	2.8	1
138	Thermodynamic properties and thermodynamic modelling for aqueous mixed system containing lithium metaborate and sodium metaborate. <i>Journal of Chemical Thermodynamics</i> , 2021 , 158, 106446	2.9	1
137	Solubility measurement and thermodynamic modeling of solid[]quid equilibria in quaternary system NaCl[]Na2SO4[]NaBO2[]2O at 323.15 K. <i>Journal of Chemical Thermodynamics</i> , 2021 , 159, 106472	2.9	7
136	Volumetric properties of disodium dihydrogen pyrophosphate aqueous solution from 283.15 to 363.15[K at 101.325[kPa. <i>Food Chemistry</i> , 2021 , 352, 129410	8.5	
135	SolidDiquid Phase Equilibria of the Quaternary system Li2SO4DiBO2Di2B4O7D2O and the Ternary Subsystem LiBO2Di2B4O7D2O at T = 288.15 K and p = 0.1 MPa. <i>Journal of Chemical & Engineering Data</i> , 2021, 66, 3463-3472	2.8	2
134	Phase equilibria and thermodynamic model of the quinary system (Li+, Na+, Mg2+//Clp SO42EH2O) at 273.15 k and 0.1 MPa. <i>Journal of Molecular Liquids</i> , 2021 , 337, 116334	6	4
133	Phase diagrams for the ternary system (NH4NO3I+ICsNO3I+IH2O) at 298.15 and 348.15IK and its application to cesium nitrate recovery from the eluent aqueous solution of ammonium nitrate. <i>Journal of Molecular Liquids</i> , 2021 , 338, 117079	6	1
132	Novel One-Pot Solvothermal Synthesis of High-Performance Copper Hexacyanoferrate for Cs+Removal from Wastewater. <i>Journal of Chemistry</i> , 2021 , 2021, 1-9	2.3	1
131	Volumetric properties of the ternary system (CsCl + Cs2SO4 + H2O) and its subsystems from 283.15 to 363.15 K and atmospheric pressure: Experimental and thermodynamic model. <i>Journal of Chemical Thermodynamics</i> , 2021 , 161, 106519	2.9	1
130	Synthesis of granulated H4Mn5O12/chitosan with improved stability by a novel cross-linking strategy for lithium adsorption from aqueous solutions. <i>Chemical Engineering Journal</i> , 2021 , 426, 13168	9 ^{14.7}	5
129	Ionic liquid [DBUH][BO2]: an excellent catalyst for chemical fixation of CO2 under mild conditions. <i>New Journal of Chemistry</i> , 2021 , 45, 4611-4616	3.6	1
128	Density, pH, and Boron Species in the Ternary System NaBO2Na2SO4日2O at 298.15 K and 323.15 K. <i>Journal of Chemistry</i> , 2021 , 2021, 1-9	2.3	O
127	Thermodynamic Modeling of Boron Species in the Ternary System Na2O-B2O3-H2O at 298.15 K. Journal of Chemistry, 2020 , 2020, 1-7	2.3	1
126	SolidLiquid Phase Equilibria of the Quaternary System (Li2B4O7 + Na2B4O7 + K2B4O7 + H2O) at 323.15 K and Its Application in Industry. <i>Journal of Chemical & Data</i> , 2020, 65, 2725-273	3 6 .8	4
125	Apparent Molar Volumes for the Binary Systems (NaI + H2O) and (NaIO3 + H2O) at Temperatures from 283.15 to 353.15 K at Ambient Pressure. <i>Journal of Chemical & Daia</i> , 2020, 65, 3510-3518	2.8	
124	Facile Synthesis of Porous Polymer Using Biomass Polyphenol Source for Highly Efficient Separation of Cs from Aqueous Solution. <i>Scientific Reports</i> , 2020 , 10, 8221	4.9	2
123	Heat Capacity and Thermodynamic Properties of Cesium Pentaborate Tetrahydrate. <i>Journal of Chemistry</i> , 2020 , 2020, 1-6	2.3	1
122	Isopiestic measurements and thermodynamic model for the ternary system {Li2B4O5(OH)4)[-LiB5O6(OH)4[-LiPCO] and its subsystem at 288.15[K and ambient pressure. Journal of Chemical Thermodynamics, 2020 , 150, 106235	2.9	

121	Green recovery of low concentration of lithium from geothermal water by a novel FPO/KNiFC ion pump technique. <i>Electrochimica Acta</i> , 2020 , 350, 136385	6.7	2
120	Solid[liquid Phase Equilibria of the Quaternary System (Li2SO4 + Na2SO4 + MgSO4 + H2O) at 288.15 K: Experimental and Model Simulation. <i>Journal of Chemical & Data, Engineering Data, 2020,</i> 65, 2597-2602	2.8	2
119	A review on emerging composite materials for cesium adsorption and environmental remediation on the latest decade. <i>Separation and Purification Technology</i> , 2020 , 251, 117340	8.3	34
118	Solubilities, Densities and Refractive Indices for the Two Ternary Systems (Li2SO4 + LiB5O8 + H2O) and (LiCl + LiB5O8 + H2O) at 298.15 K and 101.325 kPa. <i>Journal of Solution Chemistry</i> , 2020 , 49, 1430-14	14 ¹ 1 ⁸	4
117	Selective recovery of lithium from geothermal water by EGDE cross-linked spherical CTS/LMO. <i>Chemical Engineering Journal</i> , 2020 , 389, 124410	14.7	25
116	Isopiestic investigation and phase equilibrium of the high-efficient absorption refrigerants LiBr and SrBr2 at 288.15 K. <i>Journal of Molecular Liquids</i> , 2020 , 304, 112741	6	5
115	Robust and recyclable sodium carboxymethyl cellulose-ammonium phosphomolybdate composites for cesium removal from wastewater <i>RSC Advances</i> , 2020 , 10, 6139-6145	3.7	2
114	Volumetric Properties in the NaAsO2 + H2O System at Temperature from 283.15 to 363.15 K and Atmospheric Pressure. <i>Journal of Chemistry</i> , 2020 , 2020, 1-7	2.3	
113	Dilution enthalpies of LiBO2 and LiB5O8 aqueous solutions at 298.15 K and the application of ion-interaction model. <i>Thermochimica Acta</i> , 2020 , 685, 178506	2.9	5
112	SolidDiquid Phase Equilibrium for the Reciprocal Quaternary System (Na+, Cs+//ClpSO42H2O) at T = 298.15 K and 0.1 MPa. <i>Journal of Chemical & Engineering Data</i> , 2020 , 65, 1396-1401	2.8	2
111	Heat Capacities and Thermodynamic Properties of Pinnoite and Inderite. <i>Journal of Chemistry</i> , 2020 , 2020, 1-8	2.3	1
110	Solid[liquid Phase Equilibria in the Ternary Systems (LiBO2 + NaBO2 + H2O) and (LiBO2 + KBO2 + H2O) at 288.15 K and 0.1 MPa. <i>Journal of Solution Chemistry</i> , 2020 , 49, 353-364	1.8	5
109	Solubilities, densities and refractive indices of the reciprocal quaternary systems (Na+, K+//ClD B5O8D H2O) and (Li+, K+//ClDB5O8D H2O) at 298.15DK and atmospheric pressure. <i>Fluid Phase Equilibria</i> , 2020 , 516, 112594	2.5	4
108	Apparent molar volumes of sodium arsenate aqueous solution from 283.15 K to 363.15 K at ambient pressure: an experimental and thermodynamic modeling study. <i>Pure and Applied Chemistry</i> , 2020 , 92, 1673-1682	2.1	2
107	Volumetric Properties and Ion Interactions for Sodium Hypophosphite Aqueous Solution from 283.15 to 363.15 K at 101.325 kPa. <i>Russian Journal of Inorganic Chemistry</i> , 2020 , 65, 1913-1921	1.5	1
106	Volumetric properties and the ion-interaction parameters of the binary system (CsB5O8 + H2O) at temperatures from (283.15 to 363.15) K and 101 kPa. <i>Journal of Chemical Thermodynamics</i> , 2020 , 144, 105976	2.9	2
105	Experimental and Thermodynamic Modeling Study of the Quaternary System Containing Lithium, Potassium, Magnesium, and Sulfate at 288.15 K. <i>Journal of Chemical & Data</i> , 2020, 65, 49-55	2.8	2
104	Green recovery of lithium from geothermal water based on a novel lithium iron phosphate electrochemical technique. <i>Journal of Cleaner Production</i> , 2020 , 247, 119178	10.3	16

(2019-2020)

103	Thermodynamic phase equilibria in the aqueous ternary system NaClNaBO2H2O: Experimental data and solubility calculation using the Pitzer model. <i>Journal of Chemical Thermodynamics</i> , 2020 , 142, 106021	2.9	9
102	Solid-Liquid Phase Diagram of the Binary System Octadecanoic Acid and Octadecanol and the Thermal Chemical Property of the Composition at Eutectic Point. <i>Journal of Chemistry</i> , 2020 , 2020, 1-6	2.3	1
101	Thermodynamic modeling of boron species in brine systems containing metaborate and its application in evaporation simulation. <i>Journal of Materials Research and Technology</i> , 2020 , 9, 13067-130	7 555	5
100	Novel montmorillonite-sulfur composite for enhancement of selective adsorption toward cesium. <i>Green Energy and Environment</i> , 2020 , 6, 893-893	5.7	3
99	Solubility determination and thermodynamic modeling of solidDquid equilibria in the LiBO2Di2B4O7H2O system at 298.15 K and 323.15 K. <i>Fluid Phase Equilibria</i> , 2020 , 523, 112783	2.5	8
98	Dissolution enthalpies and the thermodynamic properties of sodium metaborates. <i>Journal of Molecular Liquids</i> , 2020 , 315, 113813	6	1
97	Thermodynamic and Dynamic Modeling of the Boron Species in Aqueous Potassium Borate Solution. <i>ACS Omega</i> , 2020 , 5, 15835-15842	3.9	7
96	Thermodynamic properties for the aqueous solutions of cesium borates at 298.15 K and 101 kPa: Experimental and correlation by Pitzer ion-interaction model. <i>Journal of Molecular Liquids</i> , 2020 , 318, 114272	6	1
95	Solubilities, Densities, and Refractive Indices of the Ternary System (NaBO2 + KBO2 + H2O) at T = (298.15 and 323.15) K and P = 0.1 MPa. <i>Journal of Chemical & Chemi</i>	1 ^{2.8}	2
94	Solid-Liquid Phase Equilibria of the Ternary System (CsNO3 + NH4NO3 + H2O) at (298.15 and 348.15) K and 101.325 kPa. <i>Journal of Solution Chemistry</i> , 2020 , 49, 1373-1381	1.8	3
93	Enhanced kinetics and super selectivity toward Cs in multicomponent aqueous solutions: A robust Prussian blue analogue/polyvinyl chloride composite membrane. <i>Environmental Research</i> , 2020 , 189, 109952	7.9	7
92	Experimental and Predictive Equilibrium Thermodynamics of the Aqueous Ternary System (LiCl + CaCl2 + H2O) at T = 288.15 K. <i>Journal of Chemical & Engineering Data</i> , 2020 , 65, 4369-4377	2.8	
91	Apparent molar volumes for Cs2B4O7 aqueous solution at temperatures from (283.15 to 363.15) K and 101 kPa. <i>Journal of Chemical Thermodynamics</i> , 2020 , 140, 105895	2.9	11
90	SolidIquid phase equilibria of the quinary system containing lithium, sodium, calcium, strontium and chloride ions at 273.15 k and 101.325 kPa. <i>Journal of Chemical Thermodynamics</i> , 2020 , 147, 106121	2.9	
89	Volumetric properties of the binary system (NaClO3I+IH2O) and the ternary system (NaClO3I+INaClI+IH2O) at temperatures from 283.15 to 363.15 IK and ambient pressure. <i>Journal of Molecular Liquids</i> , 2020 , 306, 112945	6	6
88	Solvent Extraction Process and Extraction Mechanism for Lithium Recovery from High Mg/Li-Ratio Brine. <i>Journal of Chemical Engineering of Japan</i> , 2019 , 52, 508-513	0.8	3
87	SolidLiquid Phase Equilibria of the Ternary System (CsCl+Cs2SO4+H2O) at (288.15 and 308.15) K and 0.1 MPa. <i>Journal of Chemical Engineering of Japan</i> , 2019 , 52, 471-477	0.8	4
86	Solidliquid Phase Equilibria of the Quinary System Containing Lithium, Sodium, Calcium, Chloride, and Borate Ions at T = 288.15 K and p = 101.325 kPa. <i>Journal of Chemical & Chemical & Company</i> ; Engineering Data, 2019 , 64, 3050-3057	2.8	4

85	Arsenic Species Analysis at Trace Level by High Performance Liquid Chromatography with Inductively Coupled Plasma Mass Spectrometry. <i>International Journal of Analytical Chemistry</i> , 2019 , 2019, 3280840	1.4	7
84	SolidDiquid Phase Equilibria in the Ternary Aqueous Systems (NaB5O8 + KB5O8 + H2O) and (LiB5O8 + KB5O8 + H2O) at 298.15 K and 101.325 kPa. <i>Journal of Solution Chemistry</i> , 2019 , 48, 1105-117	18 ^{.8}	5
83	Solubility measurement and thermodynamic modeling of solid-liquid equilibria in quaternary system NaClaCl2BrCl2H2O at 323.15 K. <i>Journal of Chemical Thermodynamics</i> , 2019 , 136, 8-15	2.9	5
82	The speciation analysis of iodate and iodide in high salt brine by high performance liquid chromatography and inductively coupled plasma mass spectrometry. <i>Journal of Analytical Atomic Spectrometry</i> , 2019 , 34, 1374-1379	3.7	8
81	Phase Equilibrium and Solvation Effect of the Ternary Mixture Solvent System (LiCl + CH3OH + H2O) at 298.15, 308.15 and 318.15 K. <i>Journal of Solution Chemistry</i> , 2019 , 48, 515-527	1.8	2
80	Porous composite CMCRCuFCPEG spheres for efficient cesium removal from wastewater. <i>New Journal of Chemistry</i> , 2019 , 43, 9658-9665	3.6	7
79	Effect of Impurity Ions on Solubility and Metastable Zone Width of Lithium Metaborate Salts. Crystals, 2019 , 9, 182	2.3	1
78	Phase Equilibria and Phase Diagrams for the Aqueous Ternary System Containing Sodium, Sulfate, and Metaborate Ions at 288.15 and 308.15 K and 101.325 kPa. <i>Journal of Chemical & Engineering Data</i> , 2019 , 64, 2809-2815	2.8	8
77	Phase diagrams and thermodynamic modeling of solid-liquid equilibria in the system NaCl&ClBrCl2H2O and its application in industry. <i>Journal of Chemical Thermodynamics</i> , 2019 , 136, 1-7	2.9	23
76	Experimental Determination and Thermodynamic Model of Solid[liquid Equilibria in the Ternary System (LiCl + SrCl2 + H2O) at 273.15 K and Its Application in Industry. <i>Journal of Solution Chemistry</i> , 2019 , 48, 528-545	1.8	13
75	Speciation Analysis of Trace Arsenic, Mercury, Selenium and Antimony in Environmental and Biological Samples Based on Hyphenated Techniques. <i>Molecules</i> , 2019 , 24,	4.8	28
74	Composite hydrogel particles encapsulated ammonium molybdophosphate for efficiently cesium selective removal and enrichment from wastewater. <i>Journal of Hazardous Materials</i> , 2019 , 371, 694-704	12.8	42
73	Heat Capacity and Thermodynamic Property of Cesium Tetraborate Pentahydrate. <i>Journal of Chemistry</i> , 2019 , 2019, 1-5	2.3	5
72	Species and correlations between selenium and mercury in fishpond ecosystems. <i>Water Environment Research</i> , 2019 , 91, 292-299	2.8	1
71	Apparent Molar Volumes of Aqueous Solutions of Lithium Pentaborate from 283.15 to 363.15 K and 101.325 kPa: An Experimental and Theoretical Study. <i>Journal of Chemical & Data</i> , 2019 , 64, 944-951	2.8	11
70	Synthesis and thermal energy storage properties of a calcium-based room temperature phase change material for energy storage. <i>Journal of Thermal Analysis and Calorimetry</i> , 2019 , 135, 3215-3221	4.1	9
69	Phase Equilibria and Phase Diagrams for the Ternary Aqueous System Containing Lithium, Sodium, and Pentaborate Ions at 298.15 and 323.15 K and 101.325 kPa. <i>Journal of Chemistry</i> , 2019 , 2019, 1-7	2.3	1
68	Synthesis of Polyporous Ion-Sieve and Its Application for Selective Recovery of Lithium from Geothermal Water. <i>ACS Applied Materials & Description</i> (2019), 11, 26364-26372	9.5	31

(2018-2019)

67	Solubilities, Densities, and Refractive Indices in the Ternary Systems (LiBO2 + NaBO2 + H2O) and (LiBO2 + KBO2 + H2O) at 298.15 K and 0.1 MPa. <i>Journal of Chemical & Description of Chemical & Description (LiBO2 + MabO2 + H2O)</i> at 298.15 K and 0.1 MPa. <i>Journal of Chemical & Description (LiBO2 + MabO2 + H2O)</i> and (LiBO2 + MabO2 + H2O) at 298.15 K and 0.1 MPa. <i>Journal of Chemical & Description (LiBO2 + MabO2 + H2O)</i> and (LiBO2 + MabO2 + H2O) and (LiBO2 + KBO2 + H2O) at 298.15 K and 0.1 MPa. <i>Journal of Chemical & Description (LiBO2 + MabO2 + H2O)</i> and (LiBO2 + KBO2 + H2O) at 298.15 K and 0.1 MPa. <i>Journal of Chemical & Description (LiBO2 + MabO2 + H2O)</i> and (LiBO2 + KBO2 + H2O) at 298.15 K and 0.1 MPa. <i>Journal of Chemical & Description (LiBO2 + MabO2 + H2O)</i> at 298.15 K and 0.1 MPa. <i>Journal of Chemical & Description (LiBO2 + MabO2 + H2O)</i> at 298.15 K and 0.1 MPa. <i>Journal of Chemical & Description (LiBO2 + MabO2 + H2O)</i> at 298.15 K and 0.1 MPa. <i>Journal of Chemical & Description (LiBO2 + MabO2 + H2O)</i> at 298.15 K and 0.1 MPa.	2.8	16
66	Phase Equilibria and Phase Diagrams for the Ternary Systems (KCl/K2SO4 + KB5O8 + H2O) at 298.15 K and 101.325 kPa. <i>Journal of Solution Chemistry</i> , 2019 , 48, 1135-1146	1.8	5
65	Solubilities, Densities, Refractive Indices, and pH Values of the Aqueous Ternary Systems (LiCl + LiB5O8 + H2O) and (Li2SO4 + LiB5O8 + H2O) at 288.15 K and 101 kPa. <i>Journal of Chemical & Engineering Data</i> , 2019 , 64, 3300-3306	2.8	3
64	Solubility Measurement and Thermodynamic Modeling of Solid⊡iquid Equilibria in the MClM2B4O7⊞2O (M = Li, Na) Systems. <i>Journal of Chemical & C</i>	, 2.8	6
63	Speciation analysis of arsenic in samples containing high concentrations of chloride by LC-HG-AFS. <i>Analytical and Bioanalytical Chemistry</i> , 2019 , 411, 7251-7260	4.4	2
62	Removal of iodine from the salt water used for caustic soda production by ion-exchange resin adsorption. <i>Desalination</i> , 2019 , 458, 76-83	10.3	15
61	Experimental Data and Thermodynamic Model in the SaltWater Ternary System (NaBO2 + Na2B4O7 + H2O) at T = 298.15 K and p = 0.1 MPa. <i>Journal of Chemical & Data</i> , 2019, 64, 5878-5885	2.8	13
60	Heat Capacities and Thermodynamic Properties of Hungchaoite and Mcallisterite. <i>Molecules</i> , 2019 , 24,	4.8	1
59	Efficient transformation of CO2 into quinazoline-2,4(1H,3H)-diones at room temperature catalyzed by a ZnI2/NEt3 system. <i>New Journal of Chemistry</i> , 2019 , 43, 16164-16168	3.6	4
58	Seasonal Variations of Phosphorus Species in the Overlying and Pore Waters of the Tuohe River, China. <i>Journal of Chemistry</i> , 2019 , 2019, 1-9	2.3	О
57	Phase Equilibria and Phase Diagrams for the Aqueous Ternary System Containing Sodium, Chloride, and Metaborate Ions at 288.15 and 308.15 K and 0.1 MPa. <i>Journal of Chemistry</i> , 2019 , 2019, 1-6	2.3	8
56	Experimental Determination and Thermodynamic Model of Solid[liquid Equilibria in the Ternary System (LiCl + CaCl2 + H2O) at 273.15 K. <i>Journal of Chemical & Data</i> , 2019, 64, 249-254	2.8	4
55	Recovery of lithium from underground brine by multistage centrifugal extraction using tri-isobutyl phosphate. <i>Separation and Purification Technology</i> , 2019 , 211, 790-798	8.3	30
54	Chemical engineering process simulation of brines using phase diagram and Pitzer model of the system CaCl2SrCl2H2O. <i>Fluid Phase Equilibria</i> , 2019 , 484, 232-238	2.5	11
53	Isopiestic measurements of thermodynamic properties for the aqueous system LiBr¶aBr2⊞2O at 373.15 K. <i>Journal of Chemical Thermodynamics</i> , 2019 , 129, 83-91	2.9	2
52	Volumetric properties of aqueous solution of lithium tetraborate from 283.15 to 363.15 K at 101.325 kPa. <i>Journal of Chemical Thermodynamics</i> , 2018 , 120, 151-156	2.9	12
51	Thermokinetics of lithium extraction with the novel extraction systems (tri-isobutyl phosphate + ionic liquid + kerosene). <i>Journal of Chemical Thermodynamics</i> , 2018 , 123, 79-85	2.9	14
50	Experimental and thermodynamic modeling study of solid-liquid equilibrium in ternary systems NaBrBrBr2H2O and KBrBrBr2H2O at 288.15 K and 0.1 MPa. <i>Journal of Molecular Liquids</i> , 2018 , 252, 362-367	6	22

49	Transportation and Transformation of Arsenic Species at the Intertidal Sediment-Water Interface of Bohai Bay, China. <i>Journal of Chemistry</i> , 2018 , 2018, 1-8	2.3	1
48	Solubility Calculation for the Brine System Na+,K+//Cl͡ˌBr͡H2O Using Pitzer Thermodynamic Model. <i>Journal of Chemical Engineering of Japan</i> , 2018 , 51, 185-189	0.8	O
47	Experimental and thermodynamic modeling study of the solid-liquid equilibrium in the ternary system (NaCl + NaClO 3 + H 2 O) at 293.15 and 333.15 K and 0.1 MPa. <i>Journal of Chemical Thermodynamics</i> , 2018 , 126, 99-104	2.9	8
46	Seasonal variations of phosphorus species in the Tuohe River, China. Part I. Sediments. <i>Journal of Oceanology and Limnology</i> , 2018 , 36, 1950-1961	1.5	2
45	Phase Equilibria in the Aqueous Ternary Systems (NaCl + NaBO2 + H2O) and (Na2SO4 + NaBO2 + H2O) at 298.15 K and 0.1 MPa. <i>Journal of Chemical & Data, 2018</i> ,	2.8	6
44	Basic Salt-Lake Brine: An Efficient Catalyst for the Transformation of CO into Quinazoline-2,4(1 H,3 H)-diones. <i>ChemSusChem</i> , 2018 , 11, 4219-4225	8.3	17
43	Experimental Determination and Thermodynamic Modeling of Solidliquid Equilibria in the Quaternary System NaClkClBrCl2H2O at 288.15 K. <i>Journal of Chemical & Data</i> , 2018,	2.8	5
42	Antimony speciation at the sediment-water interface of the Poyang Lake: response to seasonal variation. <i>Journal of Oceanology and Limnology</i> , 2018 , 36, 1941-1949	1.5	3
41	Solid-Liquid Phase Equilibria of the Ternary System (NaCl + CH3OH + H2O) at 298.15, 308.15, 318.15 K, and 0.1 MPa. <i>Journal of Chemistry</i> , 2018 , 2018, 1-8	2.3	2
40	Metastable Phase Equilibrium in the Reciprocal Quaternary System LiCl+MgCl2+Li2SO4+MgSO4+H2O at 348.15 K and 0.1 MPa. <i>Chemical Research in Chinese Universities</i> , 2018 , 34, 798-802	2.2	3
39	Recovery of Boron from Underground Brine by Continuous Centrifugal Extraction with 2-Ethyl-1,3-hexanediol (EHD) and Its Mechanism. <i>Journal of Chemistry</i> , 2018 , 2018, 1-8	2.3	1
38	Phase Equilibria of the Reciprocal Quaternary System (Na+, Ca2+//Cl[BorateH2O) at 288.15 K and 0.1 MPa. <i>Journal of Chemical & Engineering Data</i> , 2018 , 63, 4005-4011	2.8	6
37	Apparent Molar Volumes of Aqueous Solutions of Magnesium Tetraborate from 283.15 to 363.15 K and 0.1 MPa. <i>Journal of Solution Chemistry</i> , 2018 , 47, 827-837	1.8	5
36	Heat Capacity and Thermodynamic Property of Lithium Pentaborate Pentahydrate. <i>Journal of Chemistry</i> , 2018 , 2018, 1-4	2.3	5
35	SolidDiquid Phase Equilibria of Ternary Systems LiClDiBrH2O and CaCl2DaBr2H2O at 288.15 K. Journal of Chemical & Engineering Data, 2017 , 62, 833-838	2.8	10
34	Solubilities, Densities and Refractive Indices in the Aqueous Quaternary System of Lithium Sulfate, Lithium Metaborate, and Lithium Carbonate at 288.15, 298.15, 308.15 K and 0.1 MPa. <i>Journal of Chemical & Che</i>	2.8	11
33	Phase equilibria in the aqueous ternary systems (LiCl + LiBO2 + H2O) and (Li2SO4 + LiBO2 + H2O) at 323.15 K and 0.1 MPa. <i>Fluid Phase Equilibria</i> , 2017 , 436, 13-19	2.5	28
32	Solid[liquid Phase Equilibrium in the Ternary Systems (Li2B4O7 + MgB4O7 + H2O) and (Na2B4O7 + MgB4O7 + H2O) at 298.15 K. <i>Journal of Chemical & Engineering Data</i> , 2017 , 62, 253-258	2.8	26

31	Solid[liquid Phase Equilibria of the Aqueous Ternary System (CaCl2+CaB6O10+H2O) at 308.15, 323.15 K and 0.1 MPa. <i>Journal of Chemical Engineering of Japan</i> , 2017 , 50, 231-235	0.8	5
30	Phase Equilibria and Phase Separation of the Aqueous Solution System Containing Lithium Ions 2017 ,		2
29	SolidDiquid Phase Equilibria of the Aqueous Ternary System (MgSO4 + Mg2B6O11 + H2O) at (288.15, 298.15, and 308.15) K. <i>Journal of Chemical & Engineering Data</i> , 2017 , 62, 3334-3340	2.8	6
28	Solid and liquid metastable phase equilibria in the aqueous quaternary system Li+, Mg2+//SO4 2[] borate-H2O at 273.15 K. <i>Chemical Research in Chinese Universities</i> , 2017 , 33, 655-659	2.2	3
27	Metastable phase equilibria for the ternary aqueous system of lithium sulfate and potassium sulfate at T = 308.15 K: Experimental data and prediction using Pitzer model. <i>Russian Journal of Inorganic Chemistry</i> , 2016 , 61, 1169-1174	1.5	1
26	Experimental and Thermodynamic Model Study on Solid and Liquid Equilibrium of Ternary System MgBr2MgSO4H2O at 333.15 K. <i>Journal of Chemical & Engineering Data</i> , 2016 , 61, 2624-2628	2.8	4
25	Phase Equilibria in the Ternary System (LiCl + Li2SO4 + H2O) at T = (288.15 and 308.15) K: Experimental Determination and Model Simulation. <i>Journal of Chemical & Chemical & Company Engineering Data</i> , 2016 , 61, 1155-1161	2.8	20
24	Thermodynamic Phase Equilibria of the Aqueous Ternary System (LiCl+LiBO2+H2O) at 308 K: Experimental Data and Predictions Using the Pitzer Model. <i>Journal of Chemical Engineering of Japan</i> , 2016 , 49, 324-331	0.8	18
23	Extracting Lithium from the High Concentration Ratio of Magnesium and Lithium Brine Using Imidazolium-Based Ionic Liquids with Varying Alkyl Chain Lengths. <i>Journal of Chemical Engineering of Japan</i> , 2016 , 49, 104-110	0.8	21
22	Solid[liquid Phase Equilibria in the Ternary Systems (LiCl + MgCl2 + H2O) and (Li2SO4 + MgSO4 + H2O) at 288.15 K. <i>Journal of Chemical & Engineering Data</i> , 2015 , 60, 821-827	2.8	35
21	Isothermal Evaporation Process Simulation Using the Pitzer Model for the Quinary System LiClNaClRClBrCl2H2O at 298.15 K. <i>Industrial & Engineering Chemistry Research</i> , 2015 , 54, 8311-8318	3.9	45
20	Solid Π quid metastable phase equilibria for the ternary system (Li2SO4 + K2SO4 + H2O) at 288.15 and 323.15 K, p = 0.1 MPa. Fluid Phase Equilibria, 2015 , 402, 78-82	2.5	18
19	Solubilities, Densities, and Refractive Indices in the Salt-Water Ternary System (LiCl + LiBO2+ H2O) atT= 288.15 K and 298.15 K andp= 0.1 MPa. <i>Journal of Chemical & Chemical &</i>	2599	31
18	Extraction of lithium from salt lake brine with triisobutyl phosphate in ionic liquid and kerosene. <i>Chemical Research in Chinese Universities</i> , 2015 , 31, 621-626	2.2	29
17	Phase Equilibria in the Aqueous Ternary System (LiBO2 + CaB2O4 + H2O) at 288.15 and 298.15 K. Journal of Solution Chemistry, 2015 , 44, 1545-1554	1.8	18
16	Predictions on the solubility and equiscale line of water content for the quaternary system (Li+Na+Cl+SO4+H2O) at 298.15 K. <i>Calphad: Computer Coupling of Phase Diagrams and Thermochemistry</i> , 2015 , 48, 13-17	1.9	5
15	Thermal characteristics of room temperature inorganic phase change system containing calcium chloride. <i>Chemical Research in Chinese Universities</i> , 2015 , 31, 452-456	2.2	1
14	Phase equilibria in the ternary system (LiCl+Li2SO4+H2O) at T=308.15K and p=0.1MPa: Experimental data and predictions using the Pitzer model. <i>Fluid Phase Equilibria</i> , 2015 , 391, 85-89	2.5	15

13	Experimental determination and modeling of the solubility phase diagram of the ternary system (Li2SO4 + K2SO4 + H2O) at 288.15 K. <i>Thermochimica Acta</i> , 2015 , 601, 75-81	2.9	35
12	Solid[liquid Metastable Phase Equilibria in the Five-Component System (Li + Na + K + Cl + SO4 + H2O) at 308.15 K. <i>Journal of Chemical & Engineering Data</i> , 2014 , 59, 1685-1691	2.8	9
11	Seasonal variations of arsenic at the sediment water interface of Poyang Lake, China. <i>Applied Geochemistry</i> , 2014 , 47, 170-176	3.5	18
10	Solvent extraction of tellurium from chloride solutions using tri-n-butyl phosphate: conditions and thermodynamic data. <i>Scientific World Journal, The</i> , 2014 , 2014, 458705	2.2	3
9	Arsenic species analysis in freshwater using liquid chromatography combined to hydride generation atomic fluorescence spectrometry. <i>Journal of Analytical Chemistry</i> , 2014 , 69, 83-88	1.1	7
8	Phase Equilibria and Phase Diagrams for the Aqueous Ternary System (Na2SO4 + Li2SO4 + H2O) at (288 and 308) K. <i>Journal of Chemical & Engineering Data</i> , 2013 , 58, 2763-2767	2.8	32
7	Measurement and thermodynamic model study on solid + liquid equilibria and physicochemical properties of the ternary system MgBr2 + MgSO4 + H2O at 323.15 K. <i>Fluid Phase Equilibria</i> , 2013 , 342, 88-94	2.5	18
6	Interference of Lithium in Measuring Magnesium by Complexometry: Discussions of the Mechanism. <i>Journal of Chemistry</i> , 2013 , 2013, 1-4	2.3	13
5	Stable Phase Equilibrium of the Aqueous Quaternary System (MgCl2 + MgSO4 + MgB6O10 + H2O) at 323.15 K. <i>Journal of Chemical & Engineering Data</i> , 2011 , 56, 5060-5065	2.8	12
4	Caloric evaporation of the brine in Zangnan Salt Lake. <i>Frontiers of Chemical Science and Engineering</i> , 2011 , 5, 343-348	4.5	3
3	Metastable Phase Equilibrium in the Aqueous Ternary System Li2SO4 + MgSO4 + H2O at 323.15 K. Journal of Chemical & Engineering Data, 2011 , 56, 3585-3588	2.8	26
2	Simulation studies on metastable phase equilibria in the aqueous ternary systems (NaCl-MgCl2-H2O) and (KCl-MgCl2-H2O) at 308.15 K. <i>Frontiers of Chemical Engineering in China</i> , 2009 , 3, 172-175		2
1	Volumetric Properties of the Dilute Aqueous Solution of Yttrium Sulfate from 283.15 to 363.15 K at 101.325 kPa. <i>Russian Journal of Inorganic Chemistry</i> ,1	1.5	