
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7514372/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Manufacturing of self-standing multi-layered 3D-bioprinted alginate-hyaluronate constructs by controlling the cross-linking mechanisms for tissue engineering applications. Biofabrication, 2022, 14, 035013.	3.7	18
2	Recent trends in metal ion based hydrogel biomaterials for tissue engineering and other biomedical applications. Journal of Materials Science and Technology, 2021, 63, 35-53.	5.6	58
3	Nano-biomaterials for designing functional bioinks towards complex tissue and organ regeneration in 3D bioprinting. Additive Manufacturing, 2021, 37, 101639.	1.7	29
4	Symbiotic culture of nanocellulose pellicle: A potential matrix for 3D bioprinting. Materials Science and Engineering C, 2021, 119, 111552.	3.8	20
5	Three-Dimensional Printed Design of Antibiotic-Releasing Esophageal Patches for Antimicrobial Activity Prevention. Tissue Engineering - Part A, 2021, 27, 1490-1502.	1.6	9
6	Bioink homogeneity control during 3D bioprinting of multicomponent micro/nanocomposite hydrogel for even tissue regeneration using novel twin screw extrusion system. Chemical Engineering Journal, 2021, 415, 128971.	6.6	42
7	The effects of the molecular weights of hyaluronic acid on the immune responses. Biomaterials Research, 2021, 25, 27.	3.2	44
8	3D Printing of Bioinspired Alginateâ€Albumin Based Instant Gel Ink with Electroconductivity and Its Expansion to Direct Fourâ€Axis Printing of Hollow Porous Tubular Constructs without Supporting Materials. Advanced Functional Materials, 2021, 31, 2104441.	7.8	28
9	Effects of Molar Ratios of Two Immiscible Monomers toward Development of an Amphiphilic, Highly Stretchable, Bioadhesive, Self-Healing Copolymeric Hydrogel and its Mineral-Active Cellular Behavior. Biomacromolecules, 2020, 21, 892-902.	2.6	12
10	Major Clues and Pitfalls in the Differential Diagnosis of Parathyroid and Thyroid Lesions Using Fine Needle Aspiration Cytology. Medicina (Lithuania), 2020, 56, 558.	0.8	4
11	Self-crosslinking hyaluronic acid–carboxymethylcellulose hydrogel enhances multilayered 3D-printed construct shape integrity and mechanical stability for soft tissue engineering. Biofabrication, 2020, 12, 045026.	3.7	44
12	3D printable and injectable lactoferrin-loaded carboxymethyl cellulose-glycol chitosan hydrogels for tissue engineering applications. Materials Science and Engineering C, 2020, 113, 111008.	3.8	45
13	Tissue Regeneration of Human Mesenchymal Stem Cells on Porous Gelatin Micro-Carriers by Long-Term Dynamic In Vitro Culture. Tissue Engineering and Regenerative Medicine, 2019, 16, 19-28.	1.6	18
14	3D printable hyaluronic acid-based hydrogel for its potential application as a bioink in tissue engineering. Biomaterials Research, 2019, 23, 3.	3.2	142
15	A terpolymeric hydrogel of hyaluronate-hydroxyethyl acrylate-gelatin methacryloyl with tunable properties as biomaterial. Carbohydrate Polymers, 2019, 207, 628-639.	5.1	28
16	Fabrication of alginate-based stimuli-responsive, non-cytotoxic, terpolymric semi-IPN hydrogel as a carrier for controlled release of bovine albumin serum and 5-amino salicylic acid. Materials Science and Engineering C, 2019, 98, 42-53.	3.8	47
17	Comparative studies on thin polycaprolactone-tricalcium phosphate composite scaffolds and its interaction with mesenchymal stem cells. Biomaterials Research, 2019, 23, 1.	3.2	111
18	Recent trends in bioinks for 3D printing. Biomaterials Research, 2018, 22, 11.	3.2	585

#	Article	IF	CITATIONS
19	Synthesis and characterizations of alginate- <i>α</i> -tricalcium phosphate microparticle hybrid film with flexibility and high mechanical property as a biomaterial. Biomedical Materials (Bristol), 2018, 13, 025008.	1.7	32
20	Synthesis and Biocompatibility Characterizations of in Situ Chondroitin Sulfate–Gelatin Hydrogel for Tissue Engineering. Tissue Engineering and Regenerative Medicine, 2018, 15, 25-35.	1.6	33
21	Controlled release of paclitaxel using a drugâ€eluting stent through modulation of the size of drug particles <i>in vivo</i> . Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 2275-2283.	1.6	2
22	Overviews of Biomimetic Medical Materials. Advances in Experimental Medicine and Biology, 2018, 1064, 3-24.	0.8	11
23	Current Status of Development and Intellectual Properties of Biomimetic Medical Materials. Advances in Experimental Medicine and Biology, 2018, 1064, 377-399.	0.8	0
24	Click Chemistry-Based Injectable Hydrogels and Bioprinting Inks for Tissue Engineering Applications. Tissue Engineering and Regenerative Medicine, 2018, 15, 531-546.	1.6	101
25	Characterizations of hyaluronate-based terpolymeric hydrogel synthesized via free radical polymerization mechanism for biomedical applications. Colloids and Surfaces B: Biointerfaces, 2018, 170, 64-75.	2.5	45
26	A desktop multi-material 3D bio-printing system with open-source hardware and software. International Journal of Precision Engineering and Manufacturing, 2017, 18, 605-612.	1.1	45
27	Selective laser sintering scaffold with hierarchical architecture and gradient composition for osteochondral repair in rabbits. Biomaterials, 2017, 137, 37-48.	5.7	246
28	Evaluation of MC3T3 Cells Proliferation and Drug Release Study from Sodium Hyaluronate-1,4-butanediol Diglycidyl Ether Patterned Gel. Nanomaterials, 2017, 7, 328.	1.9	23
29	Bioactive Molecules Release and Cellular Responses of Alginate-Tricalcium Phosphate Particles Hybrid Gel. Nanomaterials, 2017, 7, 389.	1.9	18
30	Research trends in biomimetic medical materials for tissue engineering: commentary. Biomaterials Research, 2016, 20, 8.	3.2	7
31	Research trends in biomimetic medical materials for tissue engineering: 3D bioprinting, surface modification, nano/micro-technology and clinical aspects in tissue engineering of cartilage and bone. Biomaterials Research, 2016, 20, 10.	3.2	54
32	Micro/Nano Surface Topography and 3D Bioprinting of Biomaterials in Tissue Engineering. Journal of Nanoscience and Nanotechnology, 2016, 16, 8909-8922.	0.9	10
33	Simultaneous bioimaging recognition of cation Al3+ and anion Fâ^' by a fluorogenic method. Dyes and Pigments, 2016, 129, 43-53.	2.0	35
34	A highly selective and sensitive fluorescent turn-on Al ³⁺ chemosensor in aqueous media and living cells: experimental and theoretical studies. New Journal of Chemistry, 2016, 40, 171-178.	1.4	49
35	A dual chemosensor for Zn2+ and Co2+ in aqueous media and living cells: Experimental and theoretical studies. Sensors and Actuators B: Chemical, 2016, 223, 509-519.	4.0	68
36	Modulation of biomechanical properties of hyaluronic acid hydrogels by crosslinking agents. Journal of Biomedical Materials Research - Part A, 2015, 103, 3072-3080.	2.1	52

#	Article	IF	CITATIONS
37	Synthesis and <i>in vitro</i> characterizations of porous carboxymethyl cellulose-poly(ethylene) Tj ETQq1	1 0.784314 rgBT	/Qyerlock 1
38	Frontiers in regenerative medical materials: Comments from the participants of the 2014 China-Korea Symposium on Biomimetic and Regenerative Medical Materials. International Journal of Energy Production and Management, 2015, 2, 71-76.	1.9	2
39	A fluorescence sensor for Zn2+ that also acts as a visible sensor for Co2+ and Cu2+. Sensors and Actuators B: Chemical, 2015, 213, 268-275.	4.0	48
40	A highly selective turn-on chemosensor capable of monitoring Zn2+ concentrations in living cells and aqueous solution. Sensors and Actuators B: Chemical, 2015, 215, 568-576.	4.0	65
41	A water-soluble carboxylic-functionalized chemosensor for detecting Al3+ in aqueous media and living cells: Experimental and theoretical studies. Biosensors and Bioelectronics, 2015, 69, 226-229.	5.3	55
42	A highly selective CHEF-type chemosensor for monitoring Zn ²⁺ in aqueous solution and living cells. RSC Advances, 2015, 5, 41905-41913.	1.7	59
43	Selective zinc sensor based on pyrazoles and quinoline used to image cells. Dyes and Pigments, 2015, 113, 723-729.	2.0	47
44	Purification and biocompatibility of fermented hyaluronic acid for its applications to biomaterials. Biomaterials Research, 2014, 18, 6.	3.2	41
45	The Korean Society for Biomaterials joins forces with BioMed Central. Biomaterials Research, 2014, 18, 4.	3.2	Ο
46	Biological evaluation of micro-patterned hyaluronic acid hydrogel for bone tissue engineering. Pure and Applied Chemistry, 2014, 86, 1911-1922.	0.9	10
47	Biocompatibility and resorption pattern of newly developed hyaluronic acid hydrogel reinforced three-layer poly (lactide-co-glycolide) membrane: histologic observation in rabbit calvarial defect model. Biomaterials Research, 2014, 18, 12.	3.2	9
48	A single fluorescent chemosensor for multiple target ions: Recognition of Zn2+ in 100% aqueous solution and Fâ ^{~'} in organic solvent. Sensors and Actuators B: Chemical, 2014, 195, 36-43.	4.0	96
49	Tissue regeneration in the pores of poly(lactide-co-glycolide)-impregnated wall of expanded polytetrafluoroethylene (ePTFE) hybrid grafts. Tissue Engineering and Regenerative Medicine, 2014, 11, 323-332.	1.6	1
50	A single chemosensor for multiple analytes: fluorogenic detection of Zn ²⁺ and OAc ^{â^'} ions in aqueous solution, and an application to bioimaging. New Journal of Chemistry, 2014, 38, 2587-2594.	1.4	52
51	A platform technique for growth factor delivery with novel mode of action. Biomaterials, 2014, 35, 9888-9896.	5.7	12
52	Preparation and characterization of calcium phosphate cement of α-tricalcium phosphate-tetracalcium phosphate system incorporated with poly(γ-glutamic acid). Macromolecular Research, 2013, 21, 892-898.	1.0	6
53	Effects of recombinant human bone morphogenic proteinâ€2 and human bone marrowâ€derived stromal cells on <i>in vivo</i> bone regeneration of chitosan–poly(ethylene oxide) hydrogel. Journal of Biomedical Materials Research - Part A, 2013, 101A, 892-901.	2.1	34
54	Effect of an Adipose-Derived Stem Cell and Nerve Growth Factor-Incorporated Hydrogel on Recovery of Erectile Function in a Rat Model of Cavernous Nerve Injury. Tissue Engineering - Part A, 2013, 19, 14-23.	1.6	49

#	Article	IF	CITATIONS
55	Synthesis of In situ chondroitin sulfate hydrogel through phosphine-mediated Michael type addition reaction. Macromolecular Research, 2012, 20, 968-976.	1.0	26
56	Evaluations of nerve cell compatibility of self cross-linking chitosan-poly(ethylene oxide) hydrogel. Tissue Engineering and Regenerative Medicine, 2012, 9, 84-91.	1.6	7
57	Inhibition of biofilm formation on ventilation tubes by surface modification. In Vivo, 2012, 26, 907-11.	0.6	3
58	Biological characterizations of hyaluronic acid hydrogel particles. , 2011, , .		0
59	Physicochemical and biological characterization of hyaluronic acid-poly(ethylene oxide) hydrogel. , 2011, , .		0
60	Changes in RBC deformability and oxygen-delivering ability in cold blood cardioplegia. Clinical Hemorheology and Microcirculation, 2011, 48, 223-229.	0.9	1
61	Development and physicochemical evaluation of chondroitin sulfate-poly(ethylene oxide) hydrogel. Macromolecular Research, 2011, 19, 147-155.	1.0	7
62	Physicochemical properties of chitosan-poly(ethylene oxide) hydrogel modified through linoleic acid. Macromolecular Research, 2011, 19, 396-402.	1.0	6
63	Mechanism of albumin release from alginate and chitosan beads fabricated in dual layers. Macromolecular Research, 2011, 19, 476-482.	1.0	6
64	Effect of cross-linking spacers on biocompatibility of chitosan-spacer-poly(ethylene oxide) hydrogel. Macromolecular Research, 2011, 19, 573-581.	1.0	7
65	Induction and biological evaluations of self cross-linking chondroitin sulfate-poly(ethylene oxide) hydrogel. Macromolecular Research, 2011, 19, 1303-1309.	1.0	4
66	Cellular behaviors on the chitosan-coated porous poly(lactide-co-glycolide) hybrid scaffolds modified by ion beams. Surface and Coatings Technology, 2010, 205, S398-S404.	2.2	1
67	Evaluation of the Hemodynamics of a Tissueâ€engineered Hybrid Graft. Artificial Organs, 2010, 34, E17-21.	1.0	3
68	Characterization of lowâ€molecularâ€weight hyaluronic acidâ€based hydrogel and differential stem cell responses in the hydrogel microenvironments. Journal of Biomedical Materials Research - Part A, 2009, 88A, 967-975.	2.1	72
69	Analysis of chitosan irradiated with high-energy cyclotron ion beams. Journal of Physics and Chemistry of Solids, 2008, 69, 1569-1572.	1.9	9
70	Synthesis and characterization of matrix metalloprotease sensitive-low molecular weight hyaluronic acid based hydrogels. Journal of Materials Science: Materials in Medicine, 2008, 19, 3311-3318.	1.7	76
71	Control of chitosan molecular weight with cyclotron ion beam irradiation. Journal of Physics and Chemistry of Solids, 2008, 69, 1577-1580.	1.9	7
72	<i>In vitro</i> response of primary human bone marrow stromal cells to recombinant human bone morphogenic proteinâ€2 in the early and late stages of osteoblast differentiation. Development Growth and Differentiation, 2008, 50, 553-564.	0.6	48

#	Article	IF	CITATIONS
73	Synthesis and characterization ofin situ chitosan-based hydrogel via grafting of carboxyethyl acrylate. Journal of Biomedical Materials Research - Part A, 2007, 83A, 674-682.	2.1	56
74	Surface modification of a polytetrafluoroethylene film with cyclotron ion beams and its evaluation. Surface and Coatings Technology, 2007, 201, 5724-5728.	2.2	10
75	Surface modification of polytetrafluoroethylene using atmospheric pressure plasma jet for medical application. Surface and Coatings Technology, 2007, 201, 5097-5101.	2.2	57
76	Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells. Biomaterials, 2007, 28, 1830-1837.	5.7	462
77	Synthesis and evaluation of hyaluronic acid–poly(ethylene oxide) hydrogel via Michael-type addition reaction. Current Applied Physics, 2007, 7, e28-e32.	1.1	18
78	Modification of Expanded Polytetrafluoroethylene Surface with Low-Energy Nitrogen-Ion-Beam Irradiation. Journal of the Korean Physical Society, 2007, 50, 1579.	0.3	5
79	Diffusion of bioactive molecules through the walls of the medial tissue-engineered hybrid ePTFE grafts for applications in designs of vascular tissue regeneration. Journal of Biomedical Materials Research - Part A, 2006, 79A, 943-953.	2.1	8
80	Effects of cross-linking molecular weights in a hyaluronic acid–poly(ethylene oxide) hydrogel network on its properties. Biomedical Materials (Bristol), 2006, 1, 116-123.	1.7	30
81	Media tissue regeneration of the hybrid expanded polytetrafluoroethylene vascular graft via gelatin coating. Current Applied Physics, 2005, 5, 463-467.	1.1	7
82	Chemical modification and photograft polymerization upon expanded poly(tetrafluoroethylene). Journal of Biomaterials Science, Polymer Edition, 1998, 9, 407-426.	1.9	20
83	Surface modification of poly(tetrafluoroethylene)with benzophenone and sodium hydride by ultraviolet irradiation. Journal of Polymer Science Part A, 1997, 35, 1499-1514.	2.5	40
84	Photograft polymerization of acrylate monomers and macromonomers on photochemically reduced PTFE films. Journal of Polymer Science Part A, 1997, 35, 3467-3482.	2.5	24