Nuala A Helsby

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/751410/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparison of a thymine challenge test and endogenous uracil–dihydrouracil levels for assessment of fluoropyrimidine toxicity risk. Cancer Chemotherapy and Pharmacology, 2021, 87, 711-716.	2.3	3
2	Incidence and investigation of potential risk-factors for clozapine-associated myocarditis and cardiomyopathy in a New Zealand cohort. Psychiatry Research, 2021, 299, 113873.	3.3	10
3	Cytochrome P450 in GtoPdb v.2021.2. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	3
4	Validating TDP1 as an Inhibition Target for the Development of Chemosensitizers for Camptothecin-Based Chemotherapy Drugs. Oncology and Therapy, 2021, 9, 541-556.	2.6	11
5	Cyclophosphamide bioactivation pharmacogenetics in breast cancer patients. Cancer Chemotherapy and Pharmacology, 2021, 88, 533-542.	2.3	10
6	CYP2 family: physiological enzymes subset in GtoPdb v.2021.2. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	0
7	A systematic review of inter-individual differences in the DNA repair processes involved in melphalan monoadduct repair in relation to treatment outcomes. Cancer Chemotherapy and Pharmacology, 2021, 88, 755-769.	2.3	9
8	Severe 5-Fluorouracil-Associated Gastrointestinal Toxicity Unexplained by Dihydropyrimidine Dehydrogenase Deficiency and Renal Impairment: Should We Be Investigating Other Elimination Pathways to Assess the Risk of 5-Fluorouracil Toxicity?. European Journal of Drug Metabolism and Pharmacokinetics, 2021, 46, 817-820.	1.6	1
9	Intracellular activation of 4-hydroxycyclophosphamide into a DNA-alkylating agent in human leucocytes. Xenobiotica, 2021, 51, 1188-1198.	1.1	1
10	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Enzymes. British Journal of Pharmacology, 2021, 178, S313-S411.	5.4	320
11	Testing for dihydropyrimidine dehydrogenase deficiency in New Zealand to improve the safe use of 5-fluorouracil and capecitabine in cancer patients. New Zealand Medical Journal, 2021, 134, 120-128.	0.5	1
12	A case–control study to assess the ability of the thymine challenge test to predict patients with severe to life threatening fluoropyrimidineâ€induced gastrointestinal toxicity. British Journal of Clinical Pharmacology, 2020, 86, 155-164.	2.4	4
13	A simple ex vivo bioassay for 5-FU transport into healthy buccal mucosal cells. Cancer Chemotherapy and Pharmacology, 2019, 84, 739-748.	2.3	2
14	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Enzymes. British Journal of Pharmacology, 2019, 176, S297-S396.	5.4	423
15	The importance of both <i>CYP2C19</i> and <i>CYP2B6</i> germline variations in cyclophosphamide pharmacokinetics and clinical outcomes. British Journal of Clinical Pharmacology, 2019, 85, 1925-1934.	2.4	28
16	The Prevalence, Impact, and Risk Factors for Persistent Pain After Breast Cancer Surgery in a New Zealand Population. Pain Medicine, 2019, 20, 1803-1814.	1.9	16
17	A higher throughput assay for quantification of melphalan-induced DNA damage in peripheral blood mononuclear cells. Scientific Reports, 2019, 9, 18912.	3.3	4
18	Cytochrome P450 (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	1

#	Article	IF	CITATIONS
19	Indirect regulation of CYP2C19 gene expression via DNA methylation. Xenobiotica, 2018, 48, 781-792.	1.1	3
20	Pharmacogenomics in Papua New Guineans. Pharmacogenetics and Genomics, 2018, 28, 153-164.	1.5	6
21	Preliminary Evidence for Enhanced Thymine Absorption: A Putative New Phenotype Associated With Fluoropyrimidine Toxicity in Cancer Patients. Therapeutic Drug Monitoring, 2018, 40, 495-502.	2.0	4
22	Transport of 5-fluorouracil into primary human cells. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO4-10-8.	0.0	0
23	Human liver degradation of 5-fluorouracil: endogenous uracil may result in phenoconversion of dihydropyrimidine dehydrogenase activity. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO4-10-1.	0.0	0
24	Cross-Comparison of Exome Analysis, Next-Generation Sequencing of Amplicons, and the iPLEX® ADME PGx Panel for Pharmacogenomic Profiling. Frontiers in Pharmacology, 2016, 7, 1.	3.5	231
25	CYP2C19 and CYP2D6 genotypes in Pacific peoples. British Journal of Clinical Pharmacology, 2016, 82, 1303-1307.	2.4	15
26	High CYP2C19 phenotypic variability in gastrointestinal cancer patients. Cancer Chemotherapy and Pharmacology, 2016, 77, 195-204.	2.3	6
27	Towards a test to predict 5-fluorouracil toxicity: Pharmacokinetic data for thymine and two sequential metabolites following oral thymine administration to healthy adult males. European Journal of Pharmaceutical Sciences, 2016, 81, 36-41.	4.0	20
28	Unravelling the role of <scp>SNM</scp> 1 in the <scp>DNA</scp> repair system of <scp><i>T</i></scp> <i>rypanosoma brucei</i> . Molecular Microbiology, 2015, 96, 827-838.	2.5	9
29	The preclinical pharmacokinetic disposition of a series of perforin-inhibitors as potential immunosuppressive agents. European Journal of Drug Metabolism and Pharmacokinetics, 2015, 40, 417-425.	1.6	8
30	Single-nucleotide polymorphisms and copy number variations of the FCGR2A and FCGR3A genes in healthy Japanese subjects. Biomedical Reports, 2014, 2, 265-269.	2.0	9
31	Association between the low-dose irinotecan regimen-induced occurrence of grade 4 neutropenia and genetic variants of UGT1A1 in patients with gynecological cancers. Oncology Letters, 2014, 7, 2035-2040.	1.8	4
32	CYP2C19 genotype–phenotype discordance in patients with multiple myeloma leads to an acquired loss of drug-metabolising activity. Cancer Chemotherapy and Pharmacology, 2014, 73, 651-655.	2.3	16
33	Evaluating Aziridinyl Nitrobenzamide Compounds as Leishmanicidal Prodrugs. Antimicrobial Agents and Chemotherapy, 2014, 58, 370-377.	3.2	9
34	Exploration of a Series of 5-Arylidene-2-thioxoimidazolidin-4-ones as Inhibitors of the Cytolytic Protein Perforin. Journal of Medicinal Chemistry, 2013, 56, 9542-9555.	6.4	30
35	The Association Between Heterozygosity forUGT1A1*6,UGT1A1*28, and Variation in the Serum Total-Bilirubin Level in Healthy Young Japanese Adults. Genetic Testing and Molecular Biomarkers, 2013, 17, 464-469.	0.7	3
36	Which CYP2B6 Variants Have Functional Consequences for Cyclophosphamide Bioactivation?: TABLE 1. Drug Metabolism and Disposition, 2012, 40, 635-637.	3.3	10

#	Article	IF	CITATIONS
37	Molecular mechanisms of genetic variation and transcriptional regulation of CYP2C19. Frontiers in Genetics, 2012, 3, 206.	2.3	28
38	Pharmacogenetics of drug-metabolizing enzymes: the prodrug hypothesis. Pharmacogenomics, 2012, 13, 83-89.	1.3	17
39	DEVELOPMENT AND VALIDATION OF A HIGH PERFORMANCE LIQUID CHROMATOGRAPHY ASSAY FOR THE DETERMINATION OF A FLUORINATED ANALOGUE OF THALIDOMIDE, N-(2,6-DIOXOPIPERIDIN-3-YL)-3,4,5,6-TETRAFLUOROPHTHALAMIC ACID, AND LENALIDOMIDE. Journal of Liquid Chromatography and Related Technologies. 2011. 34. 83-92.	1.0	2
40	Comparative bioactivation of the novel antiâ€ŧuberculosis agent PAâ€824 in <i>Mycobacteria</i> and a subcellular fraction of human liver. British Journal of Pharmacology, 2011, 162, 226-236.	5.4	19
41	Metabolomic analysis reveals differences in urinary excretion of kiwifruitâ€derived metabolites in a mouse model of inflammatory bowel disease. Molecular Nutrition and Food Research, 2011, 55, 1900-1904.	3.3	10
42	The importance of correct assignment of CYP2B6 genetic variants with respect to cyclophosphamide metabolizer status. American Journal of Hematology, 2011, 86, 383-384.	4.1	10
43	Using metabolomic analysis to understand inflammatory bowel diseases. Inflammatory Bowel Diseases, 2011, 17, 1021-1029.	1.9	56
44	Do 5-fluorouracil therapies alter CYP2C19 metaboliser status?. Cancer Chemotherapy and Pharmacology, 2010, 66, 405-407.	2.3	8
45	Omeprazole-induced acute interstitial nephritis is not related to CYP2C19 genotype or CYP2C19 phenotype. British Journal of Clinical Pharmacology, 2010, 69, 516-519.	2.4	10
46	The combined impact of <i>CYP2C19</i> and <i>CYP2B6</i> pharmacogenetics on cyclophosphamide bioactivation. British Journal of Clinical Pharmacology, 2010, 70, 844-853.	2.4	46
47	Metabolomic Analysis Identifies Inflammatory and Noninflammatory Metabolic Effects of Genetic Modification in a Mouse Model of Crohn's Disease. Journal of Proteome Research, 2010, 9, 1965-1975.	3.7	64
48	Trypanocidal Activity of Aziridinyl Nitrobenzamide Prodrugs. Antimicrobial Agents and Chemotherapy, 2010, 54, 4246-4252.	3.2	42
49	Is the prevalence of CYP2C19 genetic variants different in Pacific people than in New Zealand Europeans?. New Zealand Medical Journal, 2010, 123, 37-41.	0.5	1
50	Hydrolysis of Dinitrobenzamide Phosphate Prodrugs: The Role of Alkaline Phosphatase. Drug Metabolism and Drug Interactions, 2009, 24, 1-16.	0.3	4
51	Nontargeted Urinary Metabolite Profiling of a Mouse Model of Crohn's Disease. Journal of Proteome Research, 2009, 8, 2045-2057.	3.7	59
52	CYP2C19 pharmacogenetics in advanced cancer: compromised function independent of genotype. British Journal of Cancer, 2008, 99, 1251-1255.	6.4	46
53	Metabolic Activation of the Antitumor Drug 5-(Aziridin-1-yl)-2,4-Dinitrobenzamide (CB1954) by NO Synthases. Chemical Research in Toxicology, 2008, 21, 836-843.	3.3	25
54	Influence of Mustard Group Structure on Pathways of in Vitro Metabolism of Anticancer <i>N</i> -(2-Hydroxyethyl)-3,5-dinitrobenzamide 2-Mustard Prodrugs. Drug Metabolism and Disposition, 2008, 36, 353-360.	3.3	9

#	Article	IF	CITATIONS
55	A high incidence of polymorphic CYP2C19 variants in archival blood samples from Papua New Guinea. Human Genomics, 2008, 3, 17.	2.9	15
56	Pheno- or genotype for the CYP2C19 drug metabolism polymorphism: the influence of disease. Proceedings of the Western Pharmacology Society, 2008, 51, 5-10.	0.1	7
57	Bystander Effects of Bioreductive Drugs: Potential for Exploiting Pathological Tumor Hypoxia with Dinitrobenzamide Mustards. Radiation Research, 2007, 167, 625-636.	1.5	61
58	Hepatic nitroreduction, toxicity and toxicokinetics of the anti-tumour prodrug CB 1954 in mouse and rat. Toxicology, 2007, 240, 70-85.	4.2	11
59	Can in vitro drug metabolism studies with human tissue replace in vivo animal studies?. Environmental Toxicology and Pharmacology, 2006, 21, 184-190.	4.0	17
60	Aerobic 2- and 4-nitroreduction of CB 1954 by human liver. Toxicology, 2005, 216, 129-139.	4.2	20
61	Metabolism of Thalidomide in Liver Microsomes of Mice, Rabbits, and Humans. Journal of Pharmacology and Experimental Therapeutics, 2004, 310, 571-577.	2.5	50
62	2-Amino metabolites are key mediators of CB 1954 and SN 23862 bystander effects in nitroreductase GDEPT. British Journal of Cancer, 2004, 90, 1084-1092.	6.4	71
63	Aziridinyldinitrobenzamides:Â Synthesis and Structureâ~'Activity Relationships for Activation byE.coliNitroreductase. Journal of Medicinal Chemistry, 2004, 47, 3295-3307.	6.4	29
64	Effect of Nitroreduction on the Alkylating Reactivity and Cytotoxicity of the 2,4-Dinitrobenzamide-5-aziridine CB 1954 and the Corresponding Nitrogen Mustard SN 23862:Â Distinct Mechanisms of Bioreductive Activation. Chemical Research in Toxicology, 2003, 16, 469-478.	3.3	59
65	Quantitation of bystander effects in nitroreductase suicide gene therapy using three-dimensional cell cultures. Cancer Research, 2002, 62, 1425-32.	0.9	56
66	Antimutagenic effects of wheat bran diet through modification of xenobiotic metabolising enzymes. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2000, 454, 77-88.	1.0	39
67	Leaving group effects in reductively triggered fragmentation of 4-nitrobenzyl carbamates â€. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 1601-1608.	1.3	21
68	Inhibition of Mouse and Human CYP 1A- and 2E1-dependent Substrate Metabolism by the Isoflavonoids Genistein and Equol. Food and Chemical Toxicology, 1998, 36, 375-382.	3.6	41
69	The isoflavones equol and genistein do not induce xenobiotic-metabolizing enzymes in mouse and in human cells. Xenobiotica, 1997, 27, 587-596.	1.1	39
70	The role of Sâ€nephenytoin hydroxylase (CYP2C19) in the metabolism of the antimalarial biguanides British Journal of Clinical Pharmacology, 1995, 39, 441-444.	2.4	34
71	The multiple dose pharmacokinetics of proguanil British Journal of Clinical Pharmacology, 1993, 35, 653-656.	2.4	40
72	The activation of the biguanide antimalarial proguanil coâ€segregates with the mephenytoin oxidation polymorphismâ€a panel study British Journal of Clinical Pharmacology, 1991, 31, 689-692.	2.4	144

#	Article	IF	CITATIONS
73	Inter-individual variation in the metabolic activation of the antimalarial biguanides. Parasitology Today, 1991, 7, 120-123.	3.0	2
74	In vitro metabolism of the biguanide antimalarials in human liver microsomes: evidence for a role of the mephenytoin hydroxylase (P450 MP) enzyme British Journal of Clinical Pharmacology, 1990, 30, 287-291.	2.4	62
75	The pharmacokinetics and activation of proguanil in man: consequences of variability in drug metabolism British Journal of Clinical Pharmacology, 1990, 30, 593-598.	2.4	75
76	The relative systemic availability of ivermectin after administration as capsule, tablet, and oral solution. European Journal of Clinical Pharmacology, 1988, 35, 681-684.	1.9	83