
Jayashree Bijwe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7513599/publications.pdf Version: 2024-02-01

INVASHDEE RUNAE

#	Article	IF	CITATIONS
1	Susceptibility of eco-friendly brake-pads to noise-vibration emanation due to siloxane treatment on alumina particles. Applied Acoustics, 2022, 185, 108377.	1.7	8
2	Argon low-pressure plasma treatment to stainless steel particles to augment the wear resistance of Cu-free brake-pads. Tribology International, 2022, 167, 107366.	3.0	7
3	Exploration of Zylon fibers with various aspect ratios to enhance the performance of eco-friendly brake-pads. Tribology International, 2022, 167, 107385.	3.0	7
4	Exceptional performance of bi-directionally reinforced composite of PEEK manufactured by commingling technique using poly(p-phenylene-benzobisoxazole) (PBO) fibers. Composites Science and Technology, 2022, 218, 109125.	3.8	6
5	Unexplored solid lubricity of Titanium nanoparticles in oil to modify the metallic interfaces. Applied Surface Science, 2022, 580, 152127.	3.1	6
6	Performance Augmentation of Epoxy Adhesives with TiN Nanoparticles. ACS Omega, 2022, 7, 4150-4157.	1.6	3
7	Suppression of Brake Noise and Vibration Using Aramid and Zylon Fibers: Experimental and Numerical Study. ACS Omega, 2022, 7, 21946-21960.	1.6	3
8	Propensity to noise and vibration emission of copper-free brake-pads. Tribology International, 2021, 153, 106651.	3.0	14
9	Copper-free brake-pads: A break-through by selection of the right kind of stainless steel particles. Wear, 2021, 464-465, 203537.	1.5	16
10	Functionalization of alumina particles to improve the performance of eco-friendly brake-pads. Friction, 2021, 9, 1213-1226.	3.4	11
11	Role of Promaxon-D in Controlling Tribological Performance of Cu-Free Brake Pads. Metals, 2021, 11, 441.	1.0	6
12	Particulate PTFE as a super-efficient secondary solid lubricant in PAEK composites for exceptional performance in adhesive wear mode. Composites Part C: Open Access, 2021, 4, 100110.	1.5	4
13	Interfacial interaction of PTFE sub-micron particles in oil with steel surfaces as excellent extreme-pressure additive. Journal of Molecular Liquids, 2021, 325, 115238.	2.3	19
14	Exploration of PTFE sub-micron particles for enhancing the performance of commercial oils. Surface Topography: Metrology and Properties, 2021, 9, 025005.	0.9	5
15	Processing of PAEK-graphite fabric composites – Pros and cons of film technique over powder sprinkling technique. Composites Part B: Engineering, 2021, 215, 108804.	5.9	3
16	Carbon nanotubes- A powerful nano-filler for enhancing the performance properties of polyetherketoneketone composites and adhesives. Composites Science and Technology, 2021, 210, 108813.	3.8	17
17	Promaxon-D reinforced brake-pads to ameliorate the noise-vibration performance. Wear, 2021, 477, 203808.	1.5	12
18	Carbon Nanoparticles of Varying Shapes as Additives in Mineral Oil Assessment of Comparative Performance Potential. ACS Applied Materials & Interfaces, 2021, 13, 38844-38856.	4.0	18

Jayashree Bijwe

#	Article	IF	CITATIONS
19	Synergism or antagonism in tribo-performance of nano-greases using combinations of nanoparticles of graphite and PTFE. Applied Nanoscience (Switzerland), 2021, 11, 2525-2536.	1.6	7
20	Combination of nano-particles of graphite and PTFE in the right amount for synergism as anti-wear and extreme pressure additive in oil. Surface Topography: Metrology and Properties, 2021, 9, 035049.	0.9	1
21	Various attributes controlling the performance of nano-composites and adhesives of TiC-PAEK. Composites Science and Technology, 2021, 214, 108969.	3.8	7
22	Exploration of pros and cons of polyetherimide solutions with varying concentrations as the sizing agents for graphite fibers in graphite fabric-PAEK composites. Journal of Materials Research and Technology, 2021, 14, 2085-2095.	2.6	1
23	Exploration of Talc nanoparticles to enhance the performance of Lithium grease. Tribology International, 2021, 162, 107107.	3.0	15
24	Functionalization of spherical alumina nano-particles for enhancing the performance of PAEK-based composites. Applied Surface Science, 2021, 562, 150107.	3.1	3
25	Low pressure plasma induced surface changes of some stainless steels. Surface and Coatings Technology, 2021, 425, 127700.	2.2	8
26	Fe–Al alloy for eco-friendly copper-free brake-pads. Tribology International, 2021, 163, 107156.	3.0	9
27	On the significant tribo-potential of PAEK based composites and their dry bearings. Tribology International, 2020, 142, 105994.	3.0	8
28	A complex interdependence of dispersant in nano-suspensions with varying amount of graphite particles on its stability and tribological performance. Tribology International, 2020, 142, 105968.	3.0	19
29	Phloretic acid: a smart choice to develop low-temperature polymerizable bio-based benzoxazine thermosets. Journal of Thermal Analysis and Calorimetry, 2020, 142, 1233-1242.	2.0	23
30	Role of base oils in developing extreme pressure lubricants by exploring nano-PTFE particles. Tribology International, 2020, 143, 106071.	3.0	35
31	Exploration of plasma treated stainless steel swarf to reduce the wear of copper-free brake-pads. Tribology International, 2020, 144, 106111.	3.0	24
32	Variation in size of graphite particles and its cascading effect on the performance properties of PAEK composites. Composites Part B: Engineering, 2020, 182, 107641.	5.9	17
33	Tribology of Poly(etherketone) composites based on nano-particles of solid lubricants. Composites Part B: Engineering, 2020, 201, 108323.	5.9	34
34	Roles of Size, Shape, Amount, and Functionalization of Nanoparticles of Titania in Controlling the Tribo-Performance of UHMWPE Composites. Frontiers in Materials, 2020, 7, .	1.2	8
35	A complex interdependence of thermal conductivity and lubricity of two solid lubricants to control the tribo-performance of PAEK based composites. Wear, 2020, 458-459, 203406.	1.5	5
36	Tribological Investigations of Nano and Micro-sized GraphiteÂParticles as an Additive in Lithium-Based Grease. Tribology Letters, 2020, 68, 1.	1.2	32

#	Article	IF	CITATIONS
37	Combination of nanoparticles of graphite and hexagonal boron nitride as anti-wear and extreme-pressure additives- On exploring the possibility of synergism. Surface Topography: Metrology and Properties, 2020, 8, 025025.	0.9	3
38	Potential exploration of nano-talc particles for enhancing the anti-wear and extreme pressure pressure performance of oil. Tribology International, 2020, 151, 106452.	3.0	23
39	Exploration of a novel method to treat graphite fibers to enhance the surface topography vis-Ã-vis fibre-matrix adhesion. Surface Topography: Metrology and Properties, 2020, 8, 015011.	0.9	2
40	High performance polymer composites - Influence of processing technique on the fiber length and performance properties. Wear, 2020, 446-447, 203189.	1.5	19
41	Performance properties of lithium greases with PTFE particles as additive: Controlling parameter- size or shape?. Tribology International, 2020, 148, 106302.	3.0	38
42	Composites of titanium nano and micro-particles and UHMWPE for enhanced performance properties. Surface Topography: Metrology and Properties, 2020, 8, 025013.	0.9	7
43	Surface topography modification, Film transfer and Wear mechanism for fibre reinforced polymer composites—An Overview. Surface Topography: Metrology and Properties, 2020, 8, 043002.	0.9	18
44	Graphite fabric reinforced PAEK composites by novel impregnation-co-film technique. IOP SciNotes, 2020, 1, 014001.	0.4	2
45	Role of thermal conductivity in controlling the tribo-performance of non-asbestos organic brake-pads. Journal of Composite Materials, 2020, 54, 4145-4155.	1.2	4
46	On the investigations of nano and micro-sized particles of Boric acid as a solid lubricant in PAEK composites. Surface Topography: Metrology and Properties, 2019, 7, 035005.	0.9	6
47	Exploration of potential of Zylon and Aramid fibers to enhance the abrasive wear performance of polymers. Wear, 2019, 422-423, 180-190.	1.5	17
48	Exploring the tribo-potential of nano and micron-sized particles of potassium titanate in PAEK based composite. Surface Topography: Metrology and Properties, 2019, 7, 025023.	0.9	5
49	Optimization of graphite contents in PAEK composites for best combination of performance properties. Composites Part B: Engineering, 2019, 174, 106951.	5.9	18
50	Finite element modeling of indentation and adhesive wear in sliding of carbon fiber reinforced thermoplastic polymer against metallic counterpart. Tribology International, 2019, 135, 200-212.	3.0	25
51	Role of Orientation of Graphite Fabric in Polyetherimide Composite with Respect to Loading Direction on the Wear Performance in Various Wear Modes. Tribology Letters, 2019, 67, 1.	1.2	2
52	On the significant enhancement in the performance properties of PAEK composite by inclusion of a small amount of nano-mica particles. Tribology International, 2019, 136, 87-104.	3.0	17
53	Efforts towards green friction materials. Tribology International, 2019, 136, 196-206.	3.0	36
54	A step towards replacing copper in brake-pads by using stainless steel swarf. Wear, 2019, 424-425, 133-142.	1.5	36

Jayashree Bijwe

#	Article	IF	CITATIONS
55	The effect of wollastonite silane-treatment on mechanical and tribological performance of NAO brake-pads. International Journal of Surface Science and Engineering, 2019, 13, 293.	0.4	4
56	Optimization of the amount of short glass fibers for superior wear performance of PAEK composites. Composites Part A: Applied Science and Manufacturing, 2019, 116, 158-168.	3.8	40
57	High temperature performance of composite adhesives based on PEEK and boron carbide particles. Polymer Composites, 2019, 40, 2473-2481.	2.3	10
58	Role of micro and nano-particles of hBN as a secondary solid lubricant for improving tribo-potential of PAEK composite. Tribology International, 2019, 130, 400-412.	3.0	31
59	Application and comparative study of new optimization method for performance ranking of friction materials. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2018, 232, 143-154.	1.0	21
60	Poly (ether ether ketone) - Silicon carbide composite adhesives for elevated temperature applications of stainless steel joints. Composites Science and Technology, 2018, 155, 177-188.	3.8	15
61	Investigations on influence of nano and micron sized particles of SiC on performance properties of PEEK coatings. Surface and Coatings Technology, 2018, 334, 124-133.	2.2	28
62	1. Tribology of carbon fabric-reinforced thermoplastic composites. , 2018, , 1-30.		1
63	Effect of dispersant on nanoâ€PTFE: Striking the balance between stability and triboâ€performance. Lubrication Science, 2018, 30, 339-353.	0.9	7
64	Tribo-performance enhancement of PAEK composites using nano/micro-particles of metal chalcogenides. Composites Science and Technology, 2018, 167, 7-23.	3.8	25
65	Role of size of hexagonal boron nitride particles on triboâ€performance of nano and micro oils. Lubrication Science, 2018, 30, 441-456.	0.9	24
66	Exploration of potential of graphite particles with varying sizes as EPA and AWA in oils. Tribology International, 2018, 127, 264-275.	3.0	20
67	Tribo-Investigations on Oils With Dispersants and Hexagonal Boron Nitride Particles. Journal of Tribology, 2018, 140, .	1.0	28
68	Hard metal nitrides: Role in enhancing the abrasive wear resistance of UHMWPE. Wear, 2017, 378-379, 35-42.	1.5	26
69	Synergism between particles of PTFE and hBN to enhance the performance of oils. Wear, 2017, 384-385, 169-177.	1.5	19
70	Attaining high tribo-performance of PAEK composites by selecting right combination of solid lubricants in right proportions. Composites Science and Technology, 2017, 144, 139-150.	3.8	32
71	Comparative potential assessment of solid lubricants on the performance of poly aryl ether ketone (PAEK) composites. Wear, 2017, 384-385, 192-202.	1.5	25
72	Green tribology. Surface Topography: Metrology and Properties, 2017, 5, 010302.	0.9	2

#	Article	IF	CITATIONS
73	Influence of nano-potassium titanate particles on the performance of NAO brake-pads. Wear, 2017, 376-377, 727-737.	1.5	32
74	Comparative performance evaluation of NAO friction materials containing natural graphite and thermo-graphite. Wear, 2016, 358-359, 17-22.	1.5	27
75	Role of treatment to graphite particles to increase the thermal conductivity in controlling tribo-performance of polymer composites. Wear, 2016, 360-361, 87-96.	1.5	39
76	Design and development of high performance tribo-composites based on synergism in two solid lubricants. Composites Part B: Engineering, 2016, 94, 399-410.	5.9	31
77	Assessment of potential of nano and micro-sized boron carbide particles to enhance the abrasive wear resistance of UHMWPE. Composites Part B: Engineering, 2016, 99, 312-320.	5.9	51
78	Exploration of thermoplastic polyimide as high temperature adhesive and understanding the interfacial chemistry using XPS, ToF-SIMS and Raman spectroscopy. Materials and Design, 2016, 109, 622-633.	3.3	32
79	Investigations on performance and failure mechanisms of high temperature thermoplastic polymers as adhesives. International Journal of Adhesion and Adhesives, 2016, 70, 90-101.	1.4	23
80	Effects of aramid fiber concentration on the friction and wear characteristics of non-asbestos organic friction composites using standardized braking tests. Wear, 2016, 354-355, 69-77.	1.5	98
81	Effect of dispersant on nano-PTFE based lubricants on tribo-performance in fretting wear mode. RSC Advances, 2016, 6, 22604-22614.	1.7	33
82	Development of copper-free eco-friendly brake-friction material using novel ingredients. Wear, 2016, 352-353, 79-91.	1.5	87
83	Role of combination of hexagonal boron nitride and graphite in NAO friction material. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2016, 230, 1107-1112.	1.0	10
84	Special grade of graphite in NAO friction materials for possible replacement of copper. Wear, 2015, 330-331, 515-523.	1.5	56
85	Abrasive wear performance of SiC-UHMWPE nano-composites – Influence of amount and size. Wear, 2015, 332-333, 863-871.	1.5	49
86	Multifunctionality of nonasbestos organic brake materials. , 2015, , 551-572.		7
87	Nano-PTFE: New entrant as a very promising EP additive. Tribology International, 2015, 87, 121-131.	3.0	47
88	Development of high performance poly (ether-ketone) composites based on novel processing technique. Materials & Design, 2015, 73, 50-59.	5.1	22
89	Design and development of advanced polymer composites as high performance tribo-materials based on blends of PEK and ABPBI. Wear, 2015, 342-343, 65-76.	1.5	25
90	Investigations on Performance Properties of Nano-Micro Composites Based on Polyetherketone, Short Carbon Fibers and Hexa-Boron Nitride. Science of Advanced Materials, 2015, 7, 1002-1011.	0.1	14

#	Article	IF	CITATIONS
91	Thermal properties of bisitaconimide and bisbenzoxazine blends. Journal of Thermal Analysis and Calorimetry, 2014, 116, 427-434.	2.0	5
92	Renewable benzoxazine monomer from Vanillin: Synthesis, characterization, and studies on curing behavior. Journal of Polymer Science Part A, 2014, 52, 7-11.	2.5	193
93	Thermal behaviour of bis-benzoxazines derived from renewable feed stock 'vanillin'. Polymer Degradation and Stability, 2014, 109, 270-277.	2.7	56
94	Carbon fiber surfaces and composite interphases. Composites Science and Technology, 2014, 102, 35-50.	3.8	585
95	PTFE based nano-lubricants. Wear, 2013, 306, 80-88.	1.5	83
96	Surface lubrication of graphite fabric reinforced epoxy composites with nano- and micro-sized hexagonal boron nitride. Wear, 2013, 301, 802-809.	1.5	42
97	Surface engineering with micro- and nanosized solid lubricants for enhanced performance of polymer composites and bearings. , 2013, , 687-716.		0
98	Blends of benzoxazine monomers. Journal of Thermal Analysis and Calorimetry, 2013, 111, 1357-1364.	2.0	36
99	Optimized selection of metallic fillers for best combination of performance properties of friction materials: A comprehensive study. Wear, 2013, 303, 569-583.	1.5	82
100	Strengthening of CF/PEEK interface to improve the tribological performance in low amplitude oscillating wear mode. Wear, 2013, 301, 735-739.	1.5	38
101	Synthesis of itaconimide/nadimide-functionalized benzoxazine monomers: Structural and thermal characterization. Reactive and Functional Polymers, 2013, 73, 1544-1552.	2.0	28
102	Exploration of potential of solid lubricants and short fibers in Polyetherketone (PEK) composites. Wear, 2013, 301, 810-819.	1.5	39
103	Various ways to strengthen the fiberâ€matrix interface for enhanced composite performance. Surface and Interface Analysis, 2013, 45, 1838-1848.	0.8	16
104	Comparison between Nano-and Micro-Sized Copper Particles as Fillers in NAO Friction Materials. Nanomaterials and Nanotechnology, 2013, 3, 12.	1.2	22
105	Copper Substitution and Noise Reduction in Brake Pads: Graphite Type Selection. Materials, 2012, 5, 2258-2269.	1.3	54
106	Nano-abrasives in friction materials-influence on tribological properties. Wear, 2012, 296, 693-701.	1.5	65
107	Nano and Micro PTFE for Surface Lubrication of Carbon Fabric Reinforced Polyethersulphone Composites. Materials Forming, Machining and Tribology, 2012, , 19-39.	0.7	3
108	Surface designing of carbon fabric polymer composites with nano and micron sized PTFE particles. Journal of Materials Science, 2012, 47, 4928-4935.	1.7	34

#	Article	IF	CITATIONS
109	Influence of molecular weight on performance properties of polyethersulphone and its composites with carbon fabric. Wear, 2012, 274-275, 388-394.	1.5	24
110	Enhancing the adhesive wear performance of polyetherimide composites through nano-particle treatment of the carbon fabric. Journal of Materials Science, 2012, 47, 2891-2898.	1.7	29
111	Cardanol-based bisbenzoxazines. Journal of Thermal Analysis and Calorimetry, 2012, 107, 661-668.	2.0	74
112	Gamma radiation treatment of carbon fabric to improve the fiber–matrix adhesion and tribo-performance of composites. Wear, 2011, 271, 2184-2192.	1.5	83
113	Wear performance of PEEK–carbon fabric composites with strengthened fiber–matrix interface. Wear, 2011, 271, 2261-2268.	1.5	67
114	Influence of fiber–matrix adhesion and operating parameters on sliding wear performance of carbon fabric polyethersulphone composites. Wear, 2011, 271, 2919-2927.	1.5	47
115	Influence of cold remote nitrogen oxygen plasma treatment on carbon fabric and its composites with specialty polymers. Journal of Materials Science, 2011, 46, 964-974.	1.7	93
116	Influence of Plasma Treatment on Carbon Fabric for Enhancing Abrasive Wear Properties of Polyetherimide Composites. Tribology Letters, 2011, 41, 153-162.	1.2	18
117	Role of Nano-YbF3-Treated Carbon Fabric on Improving Abrasive Wear Performance of Polyetherimide Composites. Tribology Letters, 2011, 42, 293-300.	1.2	25
118	Studies for Wear Property Correlation for Carbon Fabric-Reinforced PES Composites. Tribology Letters, 2011, 43, 267-273.	1.2	23
119	Non-asbestos organic (NAO) friction composites: Role of copper; its shape and amount. Wear, 2011, 270, 269-280.	1.5	76
120	Influence of various metallic fillers in friction materials on hot-spot appearance during stop braking. Wear, 2011, 270, 371-381.	1.5	41
121	Polyetherimide composites with gamma irradiated carbon fabric: Studies on abrasive wear. Wear, 2011, 270, 688-694.	1.5	25
122	Exploring potential of Micro-Raman spectroscopy for correlating graphitic distortion in carbon fibers with stresses in erosive wear studies of PEEK composites. Wear, 2011, 270, 791-799.	1.5	26
123	Abrasive wear studies on composites of PEEK and PES with modified surface of carbon fabric. Tribology International, 2011, 44, 81-91.	3.0	62
124	Composite friction materials based on metallic fillers: Sensitivity of μ to operating variables. Tribology International, 2011, 44, 106-113.	3.0	52
125	Optimization of material parameters for development of polyetherimide composites. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 168, 55-59.	1.7	21
126	Thermal behaviour of cardanol-based benzoxazines. Journal of Thermal Analysis and Calorimetry, 2010, 102, 769-774.	2.0	111

#	Article	IF	CITATIONS
127	Role of different metallic fillers in non-asbestos organic (NAO) friction composites for controlling sensitivity of coefficient of friction to load and speed. Tribology International, 2010, 43, 965-974.	3.0	74
128	Influence of fiber orientation on abrasive wear of unidirectionally reinforced carbon fiber–polyetherimide composites. Tribology International, 2010, 43, 959-964.	3.0	39
129	NAO friction materials with various metal powders: Tribological evaluation on full-scale inertia dynamometer. Wear, 2010, 269, 826-837.	1.5	67
130	Studies on reduced scale tribometer to investigate the effects of metal additives on friction coefficient – Temperature sensitivity in brake materials. Wear, 2010, 269, 838-846.	1.5	50
131	Influence of orientation of long fibers in carbon fiber–polyetherimide composites on mechanical and tribological properties. Wear, 2009, 267, 839-845.	1.5	51
132	Analysis of load-speed sensitivity of friction composites based on various synthetic graphites. Wear, 2009, 266, 266-274.	1.5	51
133	Optimization of weave of carbon fabric for best combination of strength and tribo-performance of polyetherimide composites in adhesive wear mode. Wear, 2008, 264, 96-105.	1.5	21
134	Optimization of brass contents for best combination of tribo-performance and thermal conductivity of non-asbestos organic (NAO) friction composites. Wear, 2008, 265, 699-712.	1.5	68
135	Polymer composite bearings with engineered tribo-surfaces. Tribology and Interface Engineering Series, 2008, 55, 483-500.	0.0	6
136	Influence of weave of carbon fabric in polyetherimide composites in various wear situations. Wear, 2007, 263, 984-991.	1.5	81
137	Optimization of steel wool contents in non-asbestos organic (NAO) friction composites for best combination of thermal conductivity and tribo-performance. Wear, 2007, 263, 1243-1248.	1.5	69
138	Influence of impingement angle on solid particle erosion of carbon fabric reinforced polyetherimide composite. Wear, 2007, 262, 568-574.	1.5	73
139	Carbon fabric reinforced polyetherimide composites: Optimization of fabric content for best combination of strength and adhesive wear performance. Wear, 2007, 262, 749-758.	1.5	49
140	NBR-modified Resin in Fade and Recovery Module in Non-asbestos Organic (NAO) Friction Materials. Tribology Letters, 2007, 27, 189-196.	1.2	38
141	Composite friction materials based on organic fibres: Sensitivity of friction and wear to operating variables. Composites Part A: Applied Science and Manufacturing, 2006, 37, 1557-1567.	3.8	79
142	Influence of amount and modification of resin on fade and recovery behavior of non-asbestos organic (NAO) friction materials. Tribology Letters, 2006, 23, 215-222.	1.2	36
143	Influence of content of carbon fabric on the low amplitude oscillating wear performance of polyetherimide composites. Tribology Letters, 2006, 23, 223-229.	1.2	11
144	Influence of PTFE content in PEEK–PTFE blends on mechanical properties and tribo-performance in various wear modes. Wear, 2005, 258, 1536-1542.	1.5	148

ARTICLE IF CITATIONS Investigations on scratch behaviour of various polyamides. Wear, 2005, 259, 661-668. 145 1.5 Assessment of Lubricity of Biodiesel Blends in Reciprocating Wear Mode., 2004, , . 146 6 Influence of fillers on the low amplitude oscillating wear behaviour of polyamide 11. Wear, 2004, 256, 1.5 29 1-8. Effect of solid lubricant and fibrous reinforcement on the abrasive wear of polyamides. Journal of Synthetic Lubrication: Research, Development and Application of Synthetic Lubricants and Functional 148 0.7 5 Fluids, 2003, 19, 327-340. Influence of Carbon Fabric on Fretting Wear Performance of Polyetherimide Composite. Journal of 149 1.0 Tribology, 2002, 124, 834-839. Analysis of simultaneous influence of operating variables on abrasive wear of phenolic composites. 150 1.5 51 Wear, 2002, 253, 787-794. Influence of weave of glass fabric on the oscillating wear performance of polyetherimide (PEI) composites. Wear, 2002, 253, 803-812. 1.5 34 Preliminary studies of the influence of cryo-treatment on the mechanical and tribological properties of ptfe and composites. Journal of Synthétic Lubrication: Research, Development and Application of 152 0.7 3 Synthetic Lubricants and Functional Fluids, 2001, 17, 309-331. Erosive wear behavior of various polyamides. Wear, 2001, 249, 702-714. 1.5 Friction and wear behavior of polyetherimide composites in various wear modes. Wear, 2001, 249, 154 1.5 155 715-726. Wear Assessment in a Biodiesel Fuelled Compression Ignition Engine., 2001, , . Influence of solid lubricants and fibre reinforcement on wear behaviour of polyethersulphone. 156 3.0 102 Tribology International, 2000, 33, 697-706. Evaluation of Engineering Polymeric Composites for Abrasive Wear Performance. Journal of 1.6 29 Reinforced Plastics and Composites, 1999, 18, 1573-1591. Dielectric Properties of Iron Phthalocyanine Compounds. Journal of Porphyrins and Phthalocyanines, 158 0.4 7 1998, 02, 223-230. Composites as friction materials: Recent developments in non-asbestos fiber reinforced friction 2.3 materials?a review. Polymer Composites, 1997, 18, 378-396. Electrical properties of iron phthalocyanine systems with a mixed valenced central iron atom. 160 2.6 3 European Polymer Journal, 1987, 23, 167-170. Studies on Friction Mechanism of NAO Brake-Pads Containing Potassium Titanate Powder as a Theme 0.3 Ingredient. SAE International Journal of Materials and Manufacturing, 0, 11, 43-56. Influence of Increasing Amount of Attapulgite on the Performance Properties of Cu-Free Brake-Pads. 162 2 0, , .

#	Article	IF	CITATIONS
163	Studies on Friction Mechanism of NAO Brake-Pads Containing Potassium Titanate Powder as a Theme Ingredient. SAE International Journal of Materials and Manufacturing, 0, 11, .	0.3	Ο
164	Influence of Amount of Phenolic Resin on the Tribological Performance of Environment-Friendly Friction Materials. , 0, , .		4
165	Eco-Friendly Brake-Pads Using Ferritic Stainless-Steel Particles of Varying Sizes: Influence on Performance Properties. , 0, , .		1
166	Controlling the Performance of Copper-Free Brake-Pads by Varying Size of Graphite Particles. , 0, , .		2