List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7513570/publications.pdf Version: 2024-02-01

ΡΑΩτερ Simor

#	Article	IF	CITATIONS
1	Sleepâ€spindle frequency: Overnight dynamics, afternoon nap effects, and possible circadian modulation. Journal of Sleep Research, 2022, 31, e13514.	3.2	10
2	The heartbeat evoked potential is a questionable biomarker in nightmare disorder: A replication study. NeuroImage: Clinical, 2022, 33, 102933.	2.7	4
3	Expectation of irrelevant novel stimuli has no consistent effect on recognition memory. Scandinavian Journal of Psychology, 2022, , .	1.5	1
4	Schizotypy unfolding into the night? Schizotypal traits and daytime psychotic-like experiences predict negative and salient dreams. Schizophrenia Research, 2022, 246, 17-25.	2.0	4
5	A set of composite, non-redundant EEG measures of NREM sleep based on the power law scaling of the Fourier spectrum. Scientific Reports, 2021, 11, 2041.	3.3	39
6	Home confinement during the COVID-19: day-to-day associations of sleep quality with rumination, psychotic-like experiences, and somatic symptoms. Sleep, 2021, 44, .	1.1	22
7	Cortical monitoring of cardiac activity during rapid eye movement sleep: the heartbeat evoked potential in phasic and tonic rapid-eye-movement microstates. Sleep, 2021, 44, .	1.1	9
8	REM Sleep Microstates in the Human Anterior Thalamus. Journal of Neuroscience, 2021, 41, 5677-5686.	3.6	9
9	Interhemispheric asymmetry during NREM sleep in the dog. Scientific Reports, 2021, 11, 18817.	3.3	8
10	Cortical hyperarousal in NREM sleep normalizes from pre- to post- REM periods in individuals with frequent nightmares. Sleep, 2020, 43, .	1.1	23
11	Hyperarousal captured in increased number of arousal events during preâ€REM periods in individuals with frequent nightmares. Journal of Sleep Research, 2020, 29, e12965.	3.2	12
12	Unaltered EEG spectral power and functional connectivity in REM microstates in frequent nightmare recallers: are nightmares really a REM parasomnia?. Sleep Medicine, 2020, 75, 192-200.	1.6	4
13	Novelty Manipulations, Memory Performance, and Predictive Coding: the Role of Unexpectedness. Frontiers in Human Neuroscience, 2020, 14, 152.	2.0	26
14	The microstructure of REM sleep: Why phasic and tonic?. Sleep Medicine Reviews, 2020, 52, 101305.	8.5	98
15	Repeated afternoon sleep recordings indicate firstâ€nightâ€effectâ€like adaptation process in family dogs. Journal of Sleep Research, 2020, 29, e12998.	3.2	15
16	The paradox of rapid eye movement sleep in the light of oscillatory activity and cortical synchronization during phasic and tonic microstates. NeuroImage, 2019, 202, 116066.	4.2	23
17	Poor sleep quality predicts psychoticâ€like symptoms: an experience sampling study in young adults with schizotypal traits. Acta Psychiatrica Scandinavica, 2019, 140, 135-146.	4.5	19
18	The pathophysiology of nightmare disorder: Signs of impaired sleep regulation and hyperarousal. Journal of Sleep Research, 2019, 28, e12867.	3.2	10

#	Article	IF	CITATIONS
19	Individual slow-wave morphology is a marker of aging. Neurobiology of Aging, 2019, 80, 71-82.	3.1	22
20	Sleep EEG functional connectivity varies with age and sex, but not general intelligence. Neurobiology of Aging, 2019, 78, 87-97.	3.1	19
21	Resting EEG correlates of long-term memory performance after repeated testing practice. Brain and Cognition, 2019, 137, 103655.	1.8	Ο
22	Somatosensory amplification absorption contribute to electrosensitivity. Ideggyogyaszati Szemle, 2019, 72, 165-170.	0.7	4
23	Modern Health Worries in Patients with Affective Disorders. A Pilot Study. Ideggyogyaszati Szemle, 2019, 72, 337-341.	0.7	8
24	Eveningness is associated with poor sleep quality and negative affect in obsessive–compulsive disorder. Journal of Behavioral Addictions, 2018, 7, 10-20.	3.7	11
25	Long-range alpha and beta and short-range gamma EEG synchronization distinguishes phasic and tonic REM periods. Sleep, 2018, 41, .	1.1	23
26	Insomnia and intellect mask the positive link between schizotypal traits and creativity. PeerJ, 2018, 6, e5615.	2.0	18
27	Lateralized rhythmic acoustic stimulation during daytime NREM sleep enhances slow waves. Sleep, 2018, 41, .	1.1	28
28	Increased cortical involvement and synchronization during CAP A1 slow waves. Brain Structure and Function, 2018, 223, 3531-3542.	2.3	5
29	Deconstructing Procedural Memory: Different Learning Trajectories and Consolidation of Sequence and Statistical Learning. Frontiers in Psychology, 2018, 9, 2708.	2.1	56
30	The interrelated effect of sleep and learning in dogs (Canis familiaris); an EEG and behavioural study. Scientific Reports, 2017, 7, 41873.	3.3	41
31	The hemispheric lateralization of sleep spindles in humans. Sleep Spindles & Cortical Up States, 2017, 1, 42-54.	1.5	15
32	Delta and theta activity during slow-wave sleep are associated with declarative but not with non-declarative learning in children with sleep-disordered breathing. Sleep Spindles & Cortical Up States, 2017, 1, 55-66.	1.5	5
33	The Benefit of Directed Forgetting Persists After a Daytime Nap: The Role of Spindles and Rapid Eye Movement Sleep in the Consolidation of Relevant Memories. Sleep, 2017, 40, .	1.1	13
34	Differential influence of asynchrony in early and late chronotypes on convergent thinking. Chronobiology International, 2017, 34, 118-128.	2.0	11
35	Age-related changes in sleep EEG are attenuated in highly intelligent individuals. NeuroImage, 2017, 146, 554-560.	4.2	23
36	The sleep EEG spectrum is a sexually dimorphic marker of general intelligence. Scientific Reports, 2017, 7, 18070.	3.3	20

#	Article	IF	CITATIONS
37	Modern health worries – the dark side of spirituality?. Scandinavian Journal of Psychology, 2016, 57, 313-320.	1.5	18
38	<scp>EEG</scp> spectral power in phasic and tonic <scp>REM</scp> sleep: different patterns in young adults and children. Journal of Sleep Research, 2016, 25, 269-277.	3.2	34
39	A comparison of two sleep spindle detection methods based on all night averages: individually adjusted vs. fixed frequencies. Frontiers in Human Neuroscience, 2015, 9, 52.	2.0	50
40	Day-to-Day Variation of Subjective Sleep Quality and Emotional States Among Healthy University Students—a 1-Week Prospective Study. International Journal of Behavioral Medicine, 2015, 22, 625-634.	1.7	38
41	Frequent nightmares are associated with blunted cortisol awakening response in women. Physiology and Behavior, 2015, 147, 233-237.	2.1	17
42	Increased interictal spike activity associated with transient slow wave trains during non-rapid eye movement sleep. Sleep and Biological Rhythms, 2015, 13, 155-162.	1.0	9
43	The influence of sleep complaints on the association between chronotype and negative emotionality in young adults. Chronobiology International, 2015, 32, 1-10.	2.0	84
44	Hungarian Validation of the Penn State Worry Questionnaire (PSWQ). European Journal of Psychological Assessment, 2015, 31, 159-165.	3.0	8
45	Objective and Subjective Components of the First-Night Effect in Young Nightmare Sufferers and Healthy Participants. Behavioral Sleep Medicine, 2014, 12, 469-480.	2.1	21
46	Sleep Spindles and Intelligence: Evidence for a Sexual Dimorphism. Journal of Neuroscience, 2014, 34, 16358-16368.	3.6	80
47	Development of a non-invasive polysomnography technique for dogs (Canis familiaris). Physiology and Behavior, 2014, 130, 149-156.	2.1	71
48	Electroencephalographic and autonomic alterations in subjects with frequent nightmares during pre-and post-REM periods. Brain and Cognition, 2014, 91, 62-70.	1.8	29
49	Somatic Symptoms and Holistic Thinking as Major Dimensions Behind Modern Health Worries. International Journal of Behavioral Medicine, 2014, 21, 869-876.	1.7	22
50	Modern Health Worries, Somatosensory Amplification, Health Anxiety and Well-Being: A Cross-Sectional Study. European Journal of Mental Health, 2014, 9, 20-33.	0.4	33
51	Modern Health Worries, Somatosensory Amplification and Subjective Symptoms: A Longitudinal Study. International Journal of Behavioral Medicine, 2013, 20, 38-41.	1.7	38
52	Fluctuations between sleep and wakefulness: Wake-like features indicated by increased EEG alpha power during different sleep stages in nightmare disorder. Biological Psychology, 2013, 94, 592-600.	2.2	38
53	Altered sleep in Borderline Personality Disorder in relation to the core dimensions of psychopathology. Scandinavian Journal of Psychology, 2013, 54, 300-312.	1.5	20
54	Disturbed Dreaming and the Instability of Sleep: Altered Nonrapid Eye Movement Sleep Microstructure in Individuals with Frequent Nightmares as Revealed by the Cyclic Alternating Pattern. Sleep, 2013, 36, 413-419.	1.1	39

#	Article	IF	CITATIONS
55	Measuring pre-reflexive consciousness: The Hungarian validation of the Mindful Attention Awareness Scale (MAAS). Learning & Perception, 2013, 5, 17-29.	2.4	14
56	Disturbed dreaming and sleep quality: altered sleep architecture in subjects with frequent nightmares. European Archives of Psychiatry and Clinical Neuroscience, 2012, 262, 687-696.	3.2	75
57	Impaired executive functions in subjects with frequent nightmares as reflected by performance in different neuropsychological tasks. Brain and Cognition, 2012, 78, 274-283.	1.8	34
58	Mindfulness and dream quality: The inverse relationship between mindfulness and negative dream affect. Scandinavian Journal of Psychology, 2011, 52, 369-375.	1.5	17
59	Early maternal separation, nightmares, and bad dreams: Results from the Hungarostudy Epidemiological Panel. Attachment and Human Development, 2011, 13, 125-140.	2.1	23
60	Psychometric properties of the Hungarian version of the original and the short form of the Positive and Negative Affect Schedule (PANAS). Neuropsychopharmacologia Hungarica, 2011, 13, 73-9.	0.1	38
61	Nightmares and bad dreams in patients with borderline personality disorder: Fantasy as a coping skill?. European Journal of Psychiatry, 2010, 24, .	1.3	25
62	Dreaming and health promotion: A theoretical proposal and some epidemiological establishments. European Journal of Mental Health, 2008, 3, 35-62.	0.4	22