Matias Avila

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/751328/publications.pdf

Version: 2024-02-01

6512 7672 30,195 370 79 citations h-index papers

g-index 380 380 380 31544 docs citations times ranked citing authors all docs

162

#	Article	IF	CITATIONS
1	Subclinical versus advanced forms of alcohol-related liver disease: Need for early detection. Clinical and Molecular Hepatology, 2023, 29, 1-15.	4.5	3
2	Immunogenomic classification of hepatocellular carcinoma patients for immune check-point inhibitors therapy: <i>cui bono</i> ?. Gut, 2023, 72, 7-9.	6.1	4
3	Loss of hepatic DRP1 exacerbates alcoholic hepatitis by inducing megamitochondria and mitochondrial maladaptation. Hepatology, 2023, 77, 159-175.	3.6	20
4	Coexistent Alcohol-Related Liver Disease and Alcohol-Related Pancreatitis: Analysis of a Large Health Care System Cohort. Digestive Diseases and Sciences, 2022, 67, 2543-2551.	1.1	2
5	Next-generation sequencing of bile cell-free DNA for the early detection of patients with malignant biliary strictures. Gut, 2022, 71, 1141-1151.	6.1	32
6	Ductular reaction promotes intrahepatic angiogenesis through Slit2–Roundabout 1 signaling. Hepatology, 2022, 75, 353-368.	3.6	20
7	Trajectory of Serum Bilirubin Predicts Spontaneous Recovery in a Real-World Cohort of Patients With Alcoholic Hepatitis. Clinical Gastroenterology and Hepatology, 2022, 20, e289-e297.	2.4	17
8	A genetic risk score and diabetes predict development of alcohol-related cirrhosis in drinkers. Journal of Hepatology, 2022, 76, 275-282.	1.8	33
9	Lipoprotein Z, a hepatotoxic lipoprotein, predicts outcome in alcoholâ€associated hepatitis. Hepatology, 2022, 75, 968-982.	3.6	3
10	Management of alcohol use disorder in patients with cirrhosis in the setting of liver transplantation. Nature Reviews Gastroenterology and Hepatology, 2022, 19, 45-59.	8.2	50
11	HIF2α Activation in NASH: A New Force Pushing Toward HCC. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 678-680.	2.3	2
12	Clinical, histological and molecular profiling of different stages of alcohol-related liver disease. Gut, 2022, 71, 1856-1866.	6.1	17
13	Plasma angiopoietin 2 as a novel prognostic biomarker in alcohol-related cirrhosis and hepatitis. Liver Research, 2022, , .	0.5	0
14	Cigarette smoking and liver diseases. Journal of Hepatology, 2022, 77, 191-205.	1.8	40
15	HOXD8 hypermethylation as a fully sensitive and specific biomarker for biliary tract cancer detectable in tissue and bile samples. British Journal of Cancer, 2022, 126, 1783-1794.	2.9	12
16	Src kinase as a potential therapeutic target in nonâ€alcoholic and alcoholic steatohepatitis. Clinical and Translational Discovery, 2022, 2, .	0.2	1
17	Prevalence and associations of metabolic syndrome in patients with alcohol use disorder. Scientific Reports, 2022, 12, 2625.	1.6	10
18	Targeting NAE1-mediated protein hyper-NEDDylation halts cholangiocarcinogenesis and impacts on tumor-stroma crosstalk in experimental models. Journal of Hepatology, 2022, 77, 177-190.	1.8	11

#	Article	IF	CITATIONS
19	Impact of <i>CYLD</i> on chromatin structure and histone methylation in malignant melanoma. International Journal of Molecular Medicine, 2022, 49, .	1.8	3
20	Epigenetic remodelling in human hepatocellular carcinoma. Journal of Experimental and Clinical Cancer Research, 2022, 41, 107.	3.5	21
21	Effect of rifaximin on infections, acuteâ€onâ€chronic liver failure and mortality in alcoholic hepatitis: A pilot study (RIFAâ€AH). Liver International, 2022, 42, 1109-1120.	1.9	20
22	Impact of Alternative Splicing Variants on Liver Cancer Biology. Cancers, 2022, 14, 18.	1.7	11
23	Bile Processing Protocol for Improved Proteomic Analysis. Methods in Molecular Biology, 2022, 2420, 1-10.	0.4	6
24	Activation of the Unfolded Protein Response (UPR) Is Associated with Cholangiocellular Injury, Fibrosis and Carcinogenesis in an Experimental Model of Fibropolycystic Liver Disease. Cancers, 2022, 14, 78.	1.7	3
25	The establishment of public health policies and the burden of non-alcoholic fatty liver disease in the Americas. The Lancet Gastroenterology and Hepatology, 2022, 7, 552-559.	3.7	25
26	DNA Methylation Regulates a Set of Long Non-Coding RNAs Compromising Hepatic Identity during Hepatocarcinogenesis. Cancers, 2022, 14, 2048.	1.7	5
27	The Amphiregulin/EGFR axis protects from lupus nephritis via downregulation of pathogenic CD4+ T helper cell responses. Journal of Autoimmunity, 2022, 129, 102829.	3.0	5
28	Deconvolution of Bulk RNAseq Data from Human Liver Samples Reveals a Metabolic Switch in Periportal Hepatocytes in Alcoholic Hepatitis. FASEB Journal, 2022, 36, .	0.2	0
29	Value of pilot studies in alcoholâ€associated hepatitis. Liver International, 2022, 42, 1697-1697.	1.9	0
30	Messenger RNA as a personalized therapy: The moment of truth for rare metabolic diseases. International Review of Cell and Molecular Biology, 2022, , .	1.6	5
31	Clinical relevance of biomarkers in cholangiocarcinoma: critical revision and future directions. Gut, 2022, , gutjnl-2022-327099.	6.1	11
32	New molecular mechanisms in cholangiocarcinoma: signals triggering interleukin-6 production in tumor cells and KRAS co-opted epigenetic mediators driving metabolic reprogramming. Journal of Experimental and Clinical Cancer Research, 2022, 41, .	3.5	9
33	Galectinâ€3 is overexpressed in advanced cirrhosis and predicts postâ€liver transplant infectious complications. Liver International, 2022, 42, 2260-2273.	1.9	10
34	Hydroxymethylbilane synthase (aka porphobilinogen deaminase): A novel metabolic tumor suppressor gene in hepatocellular carcinoma. Journal of Hepatology, 2022, 77, 912-914.	1.8	3
35	Distinct histopathological phenotypes of severe alcoholic hepatitis suggest different mechanisms driving liver injury and failure. Journal of Clinical Investigation, 2022, 132, .	3.9	23
36	Dual Targeting of G9a and DNA Methyltransferaseâ€l for the Treatment of Experimental Cholangiocarcinoma. Hepatology, 2021, 73, 2380-2396.	3.6	26

#	Article	IF	Citations
37	Epigenetic mechanisms and metabolic reprogramming in fibrogenesis: dual targeting of G9a and DNMT1 for the inhibition of liver fibrosis. Gut, 2021, 70, gutjnl-2019-320205.	6.1	36
38	Vitamin A in Nonalcoholic Fatty Liver Disease: A Key Player in an Offside Position?. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 291-293.	2.3	1
39	FGF15/19 is required for adipose tissue plasticity in response to thermogenic adaptations. Molecular Metabolism, 2021, 43, 101113.	3.0	18
40	Integrated Multiomics Reveals Glucose Use Reprogramming and Identifies a Novel Hexokinase in Alcoholic Hepatitis. Gastroenterology, 2021, 160, 1725-1740.e2.	0.6	35
41	Digging deeper into bile proteome. Journal of Proteomics, 2021, 230, 103984.	1.2	14
42	Serum Acylcarnitines Associated with High Short-Term Mortality in Patients with Alcoholic Hepatitis. Biomolecules, 2021, 11, 281.	1.8	7
43	Serum transferrin as a biomarker of hepatocyte nuclear factor 4 alpha activity and hepatocyte function in liver diseases. BMC Medicine, 2021, 19, 39.	2.3	8
44	ARMCX3 Mediates Susceptibility to Hepatic Tumorigenesis Promoted by Dietary Lipotoxicity. Cancers, 2021, 13, 1110.	1.7	7
45	An Experimental DUAL Model of Advanced Liver Damage. Hepatology Communications, 2021, 5, 1051-1068.	2.0	11
46	Abnormal Liver Function Test in Patients Infected with Coronavirus (SARS-CoV-2): A Retrospective Single-Center Study from Spain. Journal of Clinical Medicine, 2021, 10, 1039.	1.0	10
47	Epigenetic Biomarkers for the Diagnosis and Treatment of Liver Disease. Cancers, 2021, 13, 1265.	1.7	23
48	Heme oxygenase-1 inducer hemin does not inhibit SARS-CoV-2 virus infection. Biomedicine and Pharmacotherapy, 2021, 137, 111384.	2.5	12
49	Role of MIF in coordinated expression of hepatic chemokines in patients with alcohol-associated hepatitis. JCI Insight, 2021, 6, .	2.3	5
50	Portal vein thrombosis and renal dysfunction: a national comparative study of liver transplant recipients for NAFLD versus alcoholic cirrhosis. Transplant International, 2021, 34, 1105-1122.	0.8	6
51	Fibrotic Events in the Progression of Cholestatic Liver Disease. Cells, 2021, 10, 1107.	1.8	24
52	Fragile X mental retardation protein in intrahepatic cholangiocarcinoma: regulating the cancer cell behavior plasticity at the leading edge. Oncogene, 2021, 40, 4033-4049.	2.6	5
53	Endothelial dysfunction markers predict short-term mortality in patients with severe alcoholic hepatitis. Hepatology International, 2021, 15, 1006-1017.	1.9	6
54	Myeloid Endoplasmic Reticulum Resident Chaperone GP96 Facilitates Inflammation and Steatosis in Alcoholâ€Associated Liver Disease. Hepatology Communications, 2021, 5, 1165-1182.	2.0	10

#	Article	IF	CITATIONS
55	The TGF- \hat{l}^2 Pathway: A Pharmacological Target in Hepatocellular Carcinoma?. Cancers, 2021, 13, 3248.	1.7	37
56	Identification of optimal therapeutic window for steroid use in severe alcohol-associated hepatitis: A worldwide study. Journal of Hepatology, 2021, 75, 1026-1033.	1.8	59
57	Acute intermittent porphyria, givosiran, and homocysteine. Journal of Inherited Metabolic Disease, 2021, 44, 790-791.	1.7	17
58	Super enhancer regulation of cytokine-induced chemokine production in alcoholic hepatitis. Nature Communications, 2021, 12, 4560.	5.8	37
59	The Level of Alcohol Consumption in the Prior Year Does Not Impact Clinical Outcomes in Patients With Alcoholâ€Associated Hepatitis. Liver Transplantation, 2021, 27, 1382-1391.	1.3	4
60	The splicing regulator SLU7 is required to preserve DNMT1 protein stability and DNA methylation. Nucleic Acids Research, 2021, 49, 8592-8609.	6.5	2
61	Impact of Public Health Policies on Alcoholâ€Associated Liver Disease in Latin America: An Ecological Multinational Study. Hepatology, 2021, 74, 2478-2490.	3.6	27
62	FOSL1 promotes cholangiocarcinoma via transcriptional effectors that could be therapeutically targeted. Journal of Hepatology, 2021, 75, 363-376.	1.8	29
63	Moderate Alcoholic Hepatitis. Clinics in Liver Disease, 2021, 25, 537-555.	1.0	10
64	mRNA-based therapy in a rabbit model of variegate porphyria offers new insights into the pathogenesis of acute attacks. Molecular Therapy - Nucleic Acids, 2021, 25, 207-219.	2.3	7
65	Gene supplementation of CYP27A1 in the liver restores bile acid metabolism in a mouse model of cerebrotendinous xanthomatosis. Molecular Therapy - Methods and Clinical Development, 2021, 22, 210-221.	1.8	6
66	Splicing Factor SLU7 Prevents Oxidative Stressâ€Mediated Hepatocyte Nuclear Factor 4α Degradation, Preserving Hepatic Differentiation and Protecting From Liver Damage. Hepatology, 2021, 74, 2791-2807.	3.6	12
67	Loss of hepatocyte identity following aberrant YAP activation: A key mechanism in alcoholic hepatitis. Journal of Hepatology, 2021, 75, 912-923.	1.8	34
68	Neddylation inhibition ameliorates steatosis in NAFLD by boosting hepatic fatty acid oxidation via the DEPTOR-mTOR axis. Molecular Metabolism, 2021, 53, 101275.	3.0	22
69	Socioeconomic inequalities in the incidence of alcohol-related liver disease in the Latin American context. Lancet Regional Health - Europe, The, 2021, 10, 100229.	3.0	3
70	CRIg on liver macrophages clears pathobionts and protects against alcoholic liver disease. Nature Communications, 2021, 12, 7172.	5.8	22
71	Intestinal Fungal Dysbiosis and Systemic Immune Response to Fungi in Patients With Alcoholic Hepatitis. Hepatology, 2020, 71, 522-538.	3.6	151
72	Chromatin dynamics during liver regeneration. Seminars in Cell and Developmental Biology, 2020, 97, 38-46.	2.3	10

#	Article	IF	CITATIONS
73	Hepatocyte–stellate cell synapse in alcohol-induced steatosis: another role for endocannabinoids. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 5-6.	8.2	3
74	Disruption of SIRT7 Increases the Efficacy of Checkpoint Inhibitor via MEF2D Regulation of Programmed Cell Death 1 Ligand 1 in Hepatocellular Carcinoma Cells. Gastroenterology, 2020, 158, 664-678.e24.	0.6	55
75	A Novel Mouse Model of Acuteâ€onâ€Chronic Cholestatic Alcoholic Liver Disease: A Systems Biology Comparison With Human Alcoholic Hepatitis. Alcoholism: Clinical and Experimental Research, 2020, 44, 87-101.	1.4	8
76	Impact of Alcohol Use Disorder Treatment on Clinical Outcomes Among Patients With Cirrhosis. Hepatology, 2020, 71, 2080-2092.	3.6	106
77	Recent advances in alcohol-related liver disease (ALD): summary of a Gut round table meeting. Gut, 2020, 69, 764-780.	6.1	112
78	Hepatocellular Carcinoma: Updates in Pathogenesis, Detection and Treatment. Cancers, 2020, 12, 2729.	1.7	12
79	S-adenosyl-L-methionine (SAMe) halts the autoimmune response in patients with primary biliary cholangitis (PBC) via antioxidant and S-glutathionylation processes in cholangiocytes. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165895.	1.8	16
80	Multi-Omics Integration Highlights the Role of Ubiquitination in CCl4-Induced Liver Fibrosis. International Journal of Molecular Sciences, 2020, 21, 9043.	1.8	12
81	Epigenetic Mechanisms in Gastric Cancer: Potential New Therapeutic Opportunities. International Journal of Molecular Sciences, 2020, 21, 5500.	1.8	25
82	Coexistence of alcohol-related pancreatitis and alcohol-related liver disease: A systematic review and meta-analysis. Pancreatology, 2020, 20, 1069-1077.	0.5	7
83	Epigenetics in hepatocellular carcinoma development and therapy: The tip of the iceberg. JHEP Reports, 2020, 2, 100167.	2.6	51
84	Epigenetics in Liver Fibrosis: Could HDACs be a Therapeutic Target?. Cells, 2020, 9, 2321.	1.8	21
85	Hepatic lipocalin 2 promotes liver fibrosis and portal hypertension. Scientific Reports, 2020, 10, 15558.	1.6	30
86	Dual Pharmacological Targeting of HDACs and PDE5 Inhibits Liver Disease Progression in a Mouse Model of Biliary Inflammation and Fibrosis. Cancers, 2020, 12, 3748.	1.7	6
87	Exogenous Liposomal Ceramide-C6 Ameliorates Lipidomic Profile, Energy Homeostasis, and Anti-Oxidant Systems in NASH. Cells, 2020, 9, 1237.	1.8	13
88	Hepatic gap junctions amplify alcohol liver injury by propagating cGAS-mediated IRF3 activation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11667-11673.	3 . 3	50
89	Liver-specific ceramide reduction alleviates steatosis and insulin resistance in alcohol-fed mice. Journal of Lipid Research, 2020, 61, 983-994.	2.0	21
90	Reply. Hepatology, 2020, 72, 2239-2240.	3.6	0

#	Article	IF	Citations
91	A Novel Serum Metabolomic Profile for the Differential Diagnosis of Distal Cholangiocarcinoma and Pancreatic Ductal Adenocarcinoma. Cancers, 2020, 12, 1433.	1.7	20
92	Pilot Multi-Omic Analysis of Human Bile from Benign and Malignant Biliary Strictures: A Machine-Learning Approach. Cancers, 2020, 12, 1644.	1.7	38
93	Intestinal Virome in Patients With Alcoholic Hepatitis. Hepatology, 2020, 72, 2182-2196.	3.6	74
94	Amphiregulin Aggravates Glomerulonephritis via Recruitment and Activation of Myeloid Cells. Journal of the American Society of Nephrology: JASN, 2020, 31, 1996-2012.	3.0	14
95	Perturbations in Mitochondrial Dynamics Are Closely Involved in the Progression of Alcoholic Liver Disease. Alcoholism: Clinical and Experimental Research, 2020, 44, 856-865.	1.4	21
96	Non-invasive diagnosis: non-alcoholic fatty liver disease and alcoholic liver disease. Translational Gastroenterology and Hepatology, 2020, 5, 31-31.	1.5	25
97	MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology, 2020, 158, 1999-2014.e1.	0.6	1,840
98	IL-33/ST2 pathway regulates neutrophil migration and predicts outcome in patients with severe alcoholic hepatitis. Journal of Hepatology, 2020, 72, 1052-1061.	1.8	35
99	Inhibition of HSP90 and Activation of HSF1 Diminish Macrophage NLRP3 Inflammasome Activity in Alcoholâ€Associated Liver Injury. Alcoholism: Clinical and Experimental Research, 2020, 44, 1300-1311.	1.4	33
100	Loss of câ€Jun Nâ€terminal Kinase 1 and 2 Function in Liver Epithelial Cells Triggers Biliary Hyperproliferation Resembling Cholangiocarcinoma. Hepatology Communications, 2020, 4, 834-851.	2.0	17
101	Recent advances in alcoholic hepatitis. F1000Research, 2020, 9, 97.	0.8	12
102	Liquid biopsy for cancer management: a revolutionary but still limited new tool for precision medicine. Advances in Laboratory Medicine / Avances En Medicina De Laboratorio, 2020, 1, .	0.1	15
103	Alcoholic-related liver disease: pathogenesis, management and future therapeutic developments. Revista Espanola De Enfermedades Digestivas, 2020, 112, 869-878.	0.1	10
104	Dual Targeting of Histone Methyltransferase G9a and DNAâ€Methyltransferase 1 for the Treatment of Experimental Hepatocellular Carcinoma. Hepatology, 2019, 69, 587-603.	3.6	81
105	FRI-426-Overexpression of c-Jun N-terminal Kinase-1 coincides with the acquisition of cholangiocytic markers in experimental cholangiocarcinoma. Journal of Hepatology, 2019, 70, e581.	1.8	0
106	Defective HNF4alpha-dependent gene expression as a driver of hepatocellular failure in alcoholic hepatitis. Nature Communications, 2019, 10, 3126.	5.8	124
107	PS-043-Dual targeting of G9a and DNM-methyltransferase-1 for the treatment of experimental cholangiocarcinoma. Journal of Hepatology, 2019, 70, e27-e28.	1.8	1
108	THU-468-SLU7 controls genome integrity: New role of truncated SRSF3 proteins. Journal of Hepatology, 2019, 70, e365-e366.	1.8	0

#	Article	IF	CITATIONS
109	THU-477-Sumoylation/acetylation drives forward oncogenic role of LKB1 in Liver. Journal of Hepatology, 2019, 70, e371.	1.8	O
110	PS-033-Hepatocyte-specific deletion of ERK5 modulates liver regeneration in mice. Journal of Hepatology, 2019, 70, e23.	1.8	0
111	SAT-425-Serum metabolites as diagnostic biomarkers for cholangiocarcinoma, hepatocellular carcinoma and primary sclerosing cholangitis. Journal of Hepatology, 2019, 70, e821-e822.	1.8	0
112	Public health policies and alcohol-related liver disease. JHEP Reports, 2019, 1, 403-413.	2.6	33
113	THU-064-Identification of new epigenetic targets in hepatic fibrosis. Journal of Hepatology, 2019, 70, e188.	1.8	0
114	Mitogen-Activated Protein Kinases (MAPKs) and Cholangiocarcinoma: The Missing Link. Cells, 2019, 8, 1172.	1.8	29
115	Charges for Alcoholic Cirrhosis Exceed All Other Etiologies of Cirrhosis Combined: A National and State Inpatient Survey Analysis. Digestive Diseases and Sciences, 2019, 64, 1460-1469.	1.1	36
116	Role of AGAP2 in the profibrogenic effects induced by $TGF\hat{l}^2$ in LX-2 hepatic stellate cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 673-685.	1.9	15
117	Targeting CCL2/CCR2 in Tumor-Infiltrating Macrophages: A Tool Emerging Out of the Box Against Hepatocellular Carcinoma. Cellular and Molecular Gastroenterology and Hepatology, 2019, 7, 293-294.	2.3	15
118	Splicing events in the control of genome integrity: role of SLU7 and truncated SRSF3 proteins. Nucleic Acids Research, 2019, 47, 3450-3466.	6.5	53
119	Current and innovative emerging therapies for porphyrias with hepatic involvement. Journal of Hepatology, 2019, 71, 422-433.	1.8	24
120	Metabolomics Discloses a New Non-invasive Method for the Diagnosis and Prognosis of Patients with Alcoholic Hepatitis. Annals of Hepatology, 2019, 18, 144-154.	0.6	11
121	Alcohol-Related Liver Disease Is Rarely Detected at Early Stages Compared With Liver Diseases of Other Etiologies Worldwide. Clinical Gastroenterology and Hepatology, 2019, 17, 2320-2329.e12.	2.4	87
122	Hepatocyte-specific deletion of ERK5 modulates liver regeneration in mice. Digestive and Liver Disease, 2019, 51, e43.	0.4	0
123	Alcohol-related liver disease: Clinical practice guidelines by the Latin American Association for the Study of the Liver (ALEH). Annals of Hepatology, 2019, 18, 518-535.	0.6	69
124	Ischaemia reperfusion injury in liver transplantation: Cellular and molecular mechanisms. Liver International, 2019, 39, 788-801.	1.9	214
125	Causes of hOCT1â€Dependent Cholangiocarcinoma Resistance to Sorafenib and Sensitization by Tumorâ€Selective Gene Therapy. Hepatology, 2019, 70, 1246-1261.	3.6	41
126	Messenger RNA therapy for rare genetic metabolic diseases. Gut, 2019, 68, 1323-1330.	6.1	76

#	Article	IF	Citations
127	Identifying New Epigenetic Drivers of Liver Fibrosis. Cellular and Molecular Gastroenterology and Hepatology, 2019, 7, 237-238.	2.3	4
128	Response to Forrest et al American Journal of Gastroenterology, 2019, 114, 176-176.	0.2	0
129	Reduced Serum Sphingolipids Constitute a Molecular Signature of Malnutrition in Hospitalized Patients With Decompensated Cirrhosis. Clinical and Translational Gastroenterology, 2019, 10, e00013.	1.3	10
130	Journal of Hepatology: The Home of Liver Research, 2015–2019. Journal of Hepatology, 2019, 71, 1065-1069.	1.8	1
131	Bacteriophage targeting of gut bacterium attenuates alcoholic liver disease. Nature, 2019, 575, 505-511.	13.7	493
132	Treatment retention in a specialized alcohol programme after an episode of alcoholic hepatitis: Impact on alcohol relapse. Journal of Psychosomatic Research, 2019, 116, 75-82.	1.2	13
133	Ductular Reaction Cells Display an Inflammatory Profile and Recruit Neutrophils in Alcoholic Hepatitis. Hepatology, 2019, 69, 2180-2195.	3.6	52
134	SUMOylation regulates LKB1 localization and its oncogenic activity in liver cancer. EBioMedicine, 2019, 40, 406-421.	2.7	56
135	Epigenetic events involved in organic cation transporter 1â€dependent impaired response of hepatocellular carcinoma to sorafenib. British Journal of Pharmacology, 2019, 176, 787-800.	2.7	39
136	The Epidermal Growth Factor Receptor Ligand Amphiregulin Protects From Cholestatic Liver Injury and Regulates Bile Acids Synthesis. Hepatology, 2019, 69, 1632-1647.	3.6	42
137	Alcohol-related liver disease: Time for action. Journal of Hepatology, 2019, 70, 221-222.	1.8	26
138	Colder Weather and Fewer Sunlight Hours Increase Alcohol Consumption and Alcoholic Cirrhosis Worldwide. Hepatology, 2019, 69, 1916-1930.	3.6	34
139	Serum Metabolites as Diagnostic Biomarkers for Cholangiocarcinoma, Hepatocellular Carcinoma, and Primary Sclerosing Cholangitis. Hepatology, 2019, 70, 547-562.	3.6	112
140	Histopathological and Molecular Signatures of a Mouse Model of Acute-on-Chronic Alcoholic Liver Injury Demonstrate Concordance With Human Alcoholic Hepatitis. Toxicological Sciences, 2019, 170, 427-437.	1.4	15
141	Enfermedad hepática por alcohol. GuÃas de práctica clÃnica. Documento de consenso auspiciado por la AEEH. GastroenterologÃa Y HepatologÃa, 2019, 42, 657-676.	0.2	12
142	Inhibiting Cytokinesis in the Liver: A New Way to Reduce Tumor Development. Gastroenterology, 2018, 154, 1229-1231.	0.6	5
143	Dysregulation of serum bile acids and FGF19 in alcoholic hepatitis. Journal of Hepatology, 2018, 69, 396-405.	1.8	144
144	LKB1: Controlling Quiescence and Genomic Integrity at Home. Trends in Endocrinology and Metabolism, 2018, 29, 668-670.	3.1	1

#	Article	IF	Citations
145	ACG Clinical Guideline: Alcoholic Liver Disease. American Journal of Gastroenterology, 2018, 113, 175-194.	0.2	530
146	Efficacy of systemic messenger RNA therapy to treat and prevent porphyria attacks in animal models of acute intermittent porphyria. Molecular Genetics and Metabolism, 2018, 123, S70-S71.	0.5	0
147	Bile acids, FGF15/19 and liver regeneration: From mechanisms to clinical applications. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 1326-1334.	1.8	34
148	Controversies in clinical trials for alcoholic hepatitis. Journal of Hepatology, 2018, 68, 586-592.	1.8	24
149	Pyroptosis by caspase11/4â€gasderminâ€D pathway in alcoholic hepatitis in mice and patients. Hepatology, 2018, 67, 1737-1753.	3.6	165
150	The search for novel diagnostic and prognostic biomarkers in cholangiocarcinoma. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 1468-1477.	1.8	72
151	Splicing alterations contributing to cancer hallmarks in the liver: central role of dedifferentiation and genome instability. Translational Gastroenterology and Hepatology, 2018, 3, 84-84.	1.5	14
152	Fibroblast growth factors 19 and 21 in acute liver damage. Annals of Translational Medicine, 2018, 6, 257-257.	0.7	11
153	Systemic messenger RNA as an etiological treatment for acute intermittent porphyria. Nature Medicine, 2018, 24, 1899-1909.	15.2	125
154	MiR-873-5p acts as an epigenetic regulator in early stages of liver fibrosis and cirrhosis. Cell Death and Disease, 2018, 9, 958.	2.7	38
155	Need for surveillance of hepatocellular carcinoma in patients with alcoholic cirrhosis. Journal of Hepatology, 2018, 69, 1219-1220.	1.8	5
156	Therapeutic inhibition of spleen tyrosine kinase in inflammatory macrophages using PLGA nanoparticles for the treatment of non-alcoholic steatohepatitis. Journal of Controlled Release, 2018, 288, 227-238.	4.8	37
157	A Validated Score Predicts Acute Kidney Injury and Survival in Patients With Alcoholic Hepatitis. Liver Transplantation, 2018, 24, 1655-1664.	1.3	41
158	Novel role of amphiregulin in bile acids metabolism and protection from cholestatic liver injury. Journal of Hepatology, 2018, 68, S74.	1.8	0
159	<scp>TLR</scp> 7â€letâ€₹ Signaling Contributes to Ethanolâ€Induced Hepatic Inflammatory Response in Mice and in Alcoholic Hepatitis. Alcoholism: Clinical and Experimental Research, 2018, 42, 2107-2122.	1.4	41
160	Alcoholic liver disease. Nature Reviews Disease Primers, 2018, 4, 16.	18.1	660
161	Interaction of glucocorticoids with FXR/FGF19/FGF21-mediated ileum-liver crosstalk. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 2927-2937.	1.8	30
162	Reduced impact of renal failure on the outcome of patients with alcoholic liver disease undergoing liver transplantation. Liver International, 2017, 37, 290-298.	1.9	8

#	Article	IF	Citations
163	The anticoagulant rivaroxaban lowers portal hypertension in cirrhotic rats mainly by deactivating hepatic stellate cells. Hepatology, 2017, 65, 2031-2044.	3.6	71
164	X-box Binding Protein 1 Regulates Unfolded Protein, Acute-Phase, and DNA Damage Responses During RegenerationÂof Mouse Liver. Gastroenterology, 2017, 152, 1203-1216.e15.	0.6	39
165	A prospective study of the utility of plasma biomarkers to diagnose alcoholic hepatitis. Hepatology, 2017, 66, 555-563.	3.6	91
166	Fibrosis evaluation by transient elastography in alcoholic liver disease: Is the histological scoring system impacting cutoff values?. Hepatology, 2017, 65, 1758-1761.	3.6	5
167	Fibroblast growth factor 15/19 (FGF15/19) protects from diet-induced hepatic steatosis: development of an FGF19-based chimeric molecule to promote fatty liver regeneration. Gut, 2017, 66, 1818-1828.	6.1	118
168	Reply to: "Effect of abstinence on the prognosis of patients with alcoholic liver disease: A word of caution― Journal of Hepatology, 2017, 66, 1330-1331.	1.8	0
169	Fibroblast Growth Factor 15/19 in Hepatocarcinogenesis. Digestive Diseases, 2017, 35, 158-165.	0.8	35
170	Myocyte enhancer factor 2D promotes colorectal cancer angiogenesis downstream of hypoxia-inducible factor $1\hat{1}\pm$. Cancer Letters, 2017, 400, 117-126.	3.2	26
171	Discovery of first-in-class reversible dual small molecule inhibitors against G9a and DNMTs in hematological malignancies. Nature Communications, 2017, 8, 15424.	5.8	109
172	A Day-4 Lille Model Predicts Response to Corticosteroids and Mortality in Severe Alcoholic Hepatitis. American Journal of Gastroenterology, 2017, 112, 306-315.	0.2	68
173	Reply to: "Heavy daily alcohol intake at the population level predicts the weight of alcohol in cirrhosis burden worldwide: Methodological issues of confounding and prediction modelsâ€. Journal of Hepatology, 2017, 66, 865.	1.8	1
174	Prioritizing Popular Proteins in Liver Cancer: Remodelling One-Carbon Metabolism. Journal of Proteome Research, 2017, 16, 4506-4514.	1.8	17
175	Epigenetics in Liver Fibrosis. Seminars in Liver Disease, 2017, 37, 219-230.	1.8	19
176	Binge drinking as a risk factor for advanced alcoholic liver disease. Liver International, 2017, 37, 1281-1283.	1.9	33
177	Development of novel epigenetic inhibitors for the treatment of hepatocellular carcinoma. Journal of Hepatology, 2017, 66, S76-S77.	1.8	0
178	SLU7 is a survival factor for cancer cells working as a mitotic regulator. Journal of Hepatology, 2017, 66, S645.	1.8	0
179	Disparities between research attention and burden in liver diseases: implications on uneven advances in pharmacological therapies in Europe and the USA. BMJ Open, 2017, 7, e013620.	0.8	36
180	Alcohol abstinence in patients surviving an episode of alcoholic hepatitis: Prediction and impact on longâ€term survival. Hepatology, 2017, 66, 1842-1853.	3.6	119

#	Article	IF	Citations
181	Human germline hedgehog pathway mutations predispose to fatty liver. Journal of Hepatology, 2017, 67, 809-817.	1.8	24
182	Hepatocyte-derived macrophage migration inhibitory factor mediates alcohol-induced liver injury in mice and patients. Journal of Hepatology, 2017, 67, 1018-1025.	1.8	48
183	Histological parameters and alcohol abstinence determine long-term prognosis in patients with alcoholic liver disease. Journal of Hepatology, 2017, 66, 610-618.	1.8	195
184	Engineered fibroblast growth factor 19 protects from acetaminophen-induced liver injury and stimulates aged liver regeneration in mice. Cell Death and Disease, 2017, 8, e3083-e3083.	2.7	17
185	Pathophysiology and Management of Alcoholic Liver Disease: Update 2016. Gut and Liver, 2017, 11, 173-188.	1.4	167
186	Intestinal fungi contribute to development of alcoholic liver disease. Journal of Clinical Investigation, 2017, 127, 2829-2841.	3.9	336
187	Liver Transplantation for Alcoholic Liver Disease. Transplantation, 2016, 100, 981-987.	0.5	65
188	Further evidence on the janusâ€faced nature of the epidermal growth factor receptor: From liver regeneration to hepatocarcinogenesis. Hepatology, 2016, 63, 371-374.	3.6	2
189	MEF2D Transduces Microenvironment Stimuli to ZEB1 to Promote Epithelial–Mesenchymal Transition and Metastasis in Colorectal Cancer. Cancer Research, 2016, 76, 5054-5067.	0.4	53
190	Heavy daily alcohol intake at the population level predicts the weight of alcohol in cirrhosis burden worldwide. Journal of Hepatology, 2016, 65, 998-1005.	1.8	84
191	Alcoholic hepatitis: Translational approaches to develop targeted therapies. Hepatology, 2016, 64, 1343-1355.	3.6	91
192	New molecular interactions of câ€Myc in cholangiocarcinoma may open new therapeutic opportunities. Hepatology, 2016, 64, 336-339.	3.6	3
193	Corticosteroids and occurrence of and mortality from infections in severe alcoholic hepatitis: a metaâ€analysis of randomized trials. Liver International, 2016, 36, 721-728.	1.9	74
194	Integrative microRNA profiling in alcoholic hepatitis reveals a role for microRNA-182 in liver injury and inflammation. Gut, 2016, 65, 1535-1545.	6.1	103
195	LPS-TLR4 Pathway Mediates Ductular Cell Expansion in Alcoholic Hepatitis. Scientific Reports, 2016, 6, 35610.	1.6	25
196	Emerging therapies for acute intermittent porphyria. Expert Reviews in Molecular Medicine, 2016, 18, e17.	1.6	32
197	New therapeutic targets in alcoholic hepatitis. Hepatology International, 2016, 10, 538-552.	1.9	21
198	Treatment with Glucocorticoids Interferes with Bile Acid Homeostasis by Affecting Fxr/Fgf19-Mediated Ileum-Liver Crosstalk. Journal of Hepatology, 2016, 64, S178-S179.	1.8	1

#	Article	IF	Citations
199	A mouse model of alcoholic liver fibrosis-associated acute kidney injury identifies key molecular pathways. Toxicology and Applied Pharmacology, 2016, 310, 129-139.	1.3	14
200	Alcoholic hepatitis: should we combine old drugs for better results?. Hepatology International, 2016, 10, 851-853.	1.9	1
201	Development of a New Hepatoprotective and Proregenerative Molecule Based on Fibroblast Growth Factor 15/19. Journal of Hepatology, 2016, 64, S184.	1.8	2
202	Rivaroxaban Reduces Portal Hypertension in Cirrhotic Rats by Deactivating Hepatic Stellate Cells and Reducing Intrahepatic Microthrombosis. Journal of Hepatology, 2016, 64, S710-S711.	1.8	2
203	From the Editor's desk Journal of Hepatology, 2016, 64, 1-4.	1.8	7
204	Reply. Hepatology, 2016, 64, 680-681.	3.6	0
205	Splicing regulator SLU7 preserves survival of hepatocellular carcinoma cells and other solid tumors via oncogenic miR-17-92 cluster expression. Oncogene, 2016, 35, 4719-4729.	2.6	27
206	Standard Definitions and Common Data Elements for Clinical Trials in Patients With Alcoholic Hepatitis: Recommendation From the NIAAA Alcoholic Hepatitis Consortia. Gastroenterology, 2016, 150, 785-790.	0.6	387
207	New UK alcohol guidelines and Dry January: enough to give up boozing?. Nature Reviews Gastroenterology and Hepatology, 2016, 13, 191-192.	8.2	5
208	Enoxaparin reduces hepatic vascular resistance and portal pressure in cirrhotic rats. Journal of Hepatology, 2016, 64, 834-842.	1.8	97
209	Kinase analysis in alcoholic hepatitis identifies p90RSK as a potential mediator of liver fibrogenesis. Gut, 2016, 65, 840-851.	6.1	14
210	Post-translational deregulation of YAP1 is genetically controlled in rat liver cancer and determines the fate and stem-like behavior of the human disease. Oncotarget, 2016, 7, 49194-49216.	0.8	20
211	ÂAlcoholic hepatitis: How far are we and where are we going?. Annals of Hepatology, 2016, 15, 463-73.	0.6	8
212	ÂCell-based therapy to reverse advanced alcoholic liver fibrosis. Annals of Hepatology, 2016, 15, 806-8.	0.6	1
213	Matrix metalloproteinase 10 contributes to hepatocarcinogenesis in a novel crosstalk with the stromal derived factor 1/Câ€X chemokine receptor 4 axis. Hepatology, 2015, 62, 166-178.	3.6	61
214	Chemokine Receptor Ccr6 Deficiency Alters Hepatic Inflammatory Cell Recruitment and Promotes Liver Inflammation and Fibrosis. PLoS ONE, 2015, 10, e0145147.	1.1	19
215	Oxidative Stress Mechanisms in Hepatocarcinogenesis. Oxidative Stress in Applied Basic Research and Clinical Practice, 2015, , 449-477.	0.4	0
216	Liver Fibrosis in Alcoholic Liver Disease. Seminars in Liver Disease, 2015, 35, 146-156.	1.8	93

#	Article	IF	CITATIONS
217	Systemic inflammatory response and serum lipopolysaccharide levels predict multiple organ failure and death in alcoholic hepatitis. Hepatology, 2015, 62, 762-772.	3.6	230
218	lleal <scp>FGF</scp> 15 contributes to fibrosisâ€associated hepatocellular carcinoma development. International Journal of Cancer, 2015, 136, 2469-2475.	2.3	79
219	Making sorafenib irresistible: In vivo screening for mechanisms of therapy resistance in hepatocellular carcinoma hits on Mapk14. Hepatology, 2015, 61, 1755-1757.	3.6	16
220	O096: Matrix metalloproteinase-10 contributes to hepatocellular carcinoma development in a novel crosstalk with stromal derived growth factor $1/C$ -X-C chemokine receptor 4 axis. Journal of Hepatology, 2015, 62, S242.	1.8	0
221	The FXR-FGF19 Gut–Liver Axis as a Novel "Hepatostat― Gastroenterology, 2015, 149, 537-540.	0.6	23
222	Fat-Specific Protein 27/CIDEC Promotes Development of Alcoholic Steatohepatitis in Mice and Humans. Gastroenterology, 2015, 149, 1030-1041.e6.	0.6	114
223	Regulation of hepatocyte identity and quiescence. Cellular and Molecular Life Sciences, 2015, 72, 3831-3851.	2.4	38
224	Trends in the management and burden of alcoholic liver disease. Journal of Hepatology, 2015, 62, S38-S46.	1.8	254
225	Identifying Molecular Targets to Improve Immune Function in Alcoholic Hepatitis. Gastroenterology, 2015, 148, 498-501.	0.6	12
226	Liver Fibrosis. Seminars in Liver Disease, 2015, 35, 095-096.	1.8	10
227	Progenitor cell expansion and impaired hepatocyte regeneration in explanted livers from alcoholic hepatitis. Gut, 2015, 64, 1949-1960.	6.1	137
228	Radioembolization of hepatocellular carcinoma activates liver regeneration, induces inflammation and endothelial stress and activates coagulation. Liver International, 2015, 35, 1590-1596.	1.9	55
229	Alcoholic liver disease: Clinical and translational research. Experimental and Molecular Pathology, 2015, 99, 596-610.	0.9	36
230	Authors' response: Observations suggesting bioactive Fgf15 is not present in mouse blood. Gut, 2014, 63, 206-206.	6.1	2
231	Deciphering liver zonation: New insights into the \hat{l}^2 -catenin, Tcf4, and HNF4 \hat{l} ± triad. Hepatology, 2014, 59, 2080-2082.	3.6	21
232	Deletion of SIRT1 From Hepatocytes in Mice Disrupts Lipin-1 Signaling and Aggravates Alcoholic Fatty Liver. Gastroenterology, 2014, 146, 801-811.	0.6	167
233	Amphiregulin. Seminars in Cell and Developmental Biology, 2014, 28, 31-41.	2.3	213
234	The EGFR signalling system in the liver: from hepatoprotection to hepatocarcinogenesis. Journal of Gastroenterology, 2014, 49, 9-23.	2.3	129

#	Article	IF	Citations
235	Paracentesis Is Associated With Reduced Mortality in Patients Hospitalized With Cirrhosis and Ascites. Clinical Gastroenterology and Hepatology, 2014, 12, 496-503.e1.	2.4	77
236	A GAPDH-Mediated Trans-Nitrosylation Pathway Is Required for Feedback Inhibition of Bile Salt Synthesis in Rat Liver. Gastroenterology, 2014, 147, 1084-1093.	0.6	19
237	Matrix metalloproteinaseâ€10 expression is induced during hepatic injury and plays a fundamental role in liver tissue repair. Liver International, 2014, 34, e257-70.	1.9	43
238	Alterations in the expression and activity of pre-mRNA splicing factors in hepatocarcinogenesis. Hepatic Oncology, 2014, 1, 241-252.	4.2	9
239	CCL20 mediates lipopolysaccharide induced liver injury and is a potential driver of inflammation and fibrosis in alcoholic hepatitis. Gut, 2014, 63, 1782-1792.	6.1	118
240	Overexpression of the Transcription Factor MEF2D in Hepatocellular Carcinoma Sustains Malignant Character by Suppressing G2–M Transition Genes. Cancer Research, 2014, 74, 1452-1462.	0.4	77
241	Alcoholic and non-alcoholic steatohepatitis. Experimental and Molecular Pathology, 2014, 97, 492-510.	0.9	56
242	New mechanisms involving the EGFR and FGF15/19 systems in liver regeneration and carcinogenesis. European Journal of Medical Research, 2014, 19, .	0.9	0
243	A Histologic Scoring System for Prognosis of Patients With AlcoholicÂHepatitis. Gastroenterology, 2014, 146, 1231-1239.e6.	0.6	353
244	Alcoholic hepatitis: Prognosis and treatment. GastroenterologÃa Y HepatologÃa, 2014, 37, 262-268.	0.2	23
245	Identifying Molecular Factors That Contribute to Resolution of Liver Fibrosis. Gastroenterology, 2014, 146, 1160-1164.	0.6	34
246	Splicing regulator SLU7 is essential for maintaining liver homeostasis. Journal of Clinical Investigation, 2014, 124, 2909-2920.	3.9	55
247	Amphiregulin. , 2014, , 204-207.		0
248	Amphiregulin., 2014,, 1-4.		0
249	Transcriptome analysis identifies TNF superfamily receptors as potential therapeutic targets in alcoholic hepatitis. Gut, 2013, 62, 452-460.	6.1	167
250	Identification of fibroblast growth factor 15 as a novel mediator of liver regeneration and its application in the prevention of post-resection liver failure in mice. Gut, 2013, 62, 899-910.	6.1	163
251	Nuclear $\hat{l}\pm 1$ -Antichymotrypsin Promotes Chromatin Condensation and Inhibits Proliferation of Human Hepatocellular Carcinoma Cells. Gastroenterology, 2013, 144, 818-828.e4.	0.6	37
252	Dissecting the role of CB1 receptors on chronic liver diseases. Gut, 2013, 62, 957-958.	6.1	4

#	Article	IF	CITATIONS
253	Platelet-derived growth factor D: A new player in the complex cross-talk between cholangiocarcinoma cells and cancer-associated fibroblasts. Hepatology, 2013, 58, 853-855.	3.6	6
254	Toll-like receptor-4 expression by hepatic progenitor cells and biliary epithelial cells in HCV-related chronic liver disease. Modern Pathology, 2012, 25, 576-589.	2.9	30
255	Fueling fibrosis in chronic hepatitis C. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14293-14294.	3.3	16
256	Acute Kidney Injury Is an Early Predictor of Mortality for Patients With Alcoholic Hepatitis. Clinical Gastroenterology and Hepatology, 2012, 10, 65-71.e3.	2.4	155
257	Lack of Abcc3 expression impairs bile-acid induced liver growth and delays hepatic regeneration after partial hepatectomy in mice. Journal of Hepatology, 2012, 56, 367-373.	1.8	43
258	Epidermal Growth Factor Receptor Signaling in Hepatocellular Carcinoma: Inflammatory Activation and a New Intracellular Regulatory Mechanism. Digestive Diseases, 2012, 30, 524-531.	0.8	41
259	Regulation of Amphiregulin Gene Expression by \hat{l}^2 -Catenin Signaling in Human Hepatocellular Carcinoma Cells: A Novel Crosstalk between FGF19 and the EGFR System. PLoS ONE, 2012, 7, e52711.	1.1	45
260	Liver progenitor cell markers correlate with liver damage and predict short-term mortality in patients with alcoholic hepatitis. Hepatology, 2012, 55, 1931-1941.	3.6	177
261	Promotion of Hepatocellular Carcinoma by the Intestinal Microbiota and TLR4. Cancer Cell, 2012, 21, 504-516.	7.7	1,051
262	Alcoholic Liver Disease: Pathogenesis and New Therapeutic Targets. Gastroenterology, 2011, 141, 1572-1585.	0.6	1,544
263	Epidermal Growth Factor Receptor (EGFR) Crosstalks in Liver Cancers, 2011, 3, 2444-2461.	1.7	65
264	Long distance calling for liver regeneration: Identification of neuroendocrine signalling pathways activated after partial hepatectomy. Journal of Hepatology, 2011, 54, 403-405.	1.8	6
265	Connective tissue growth factor autocriny in human hepatocellular carcinoma: Oncogenic role and regulation by epidermal growth factor receptor/yes-associated protein-mediated activation. Hepatology, 2011, 54, 2149-2158.	3.6	108
266	Fibrosis in alcoholic and nonalcoholic steatohepatitis. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2011, 25, 231-244.	1.0	63
267	Protein Arginine Methyltransferase 5 Regulates ERK1/2 Signal Transduction Amplitude and Cell Fate Through CRAF. Science Signaling, 2011, 4, ra58.	1.6	118
268	Methylthioadenosine (MTA) inhibits melanoma cell proliferation and in vivotumor growth. BMC Cancer, 2010, 10, 265.	1.1	35
269	Reply: Cigarette Smoking Is Not Associated with Specific Histological Features or Severity of Nonalcoholic Fatty Liver Disease. Hepatology, 2010, 52, 391-392.	3.6	1
270	Interleukin-22 treatment ameliorates alcoholic liver injury in a murine model of chronic-binge ethanol feeding: Role of signal transducer and activator of transcription 3. Hepatology, 2010, 52, 1291-1300.	3.6	364

#	Article	IF	Citations
271	Cigarette smoking and chronic liver diseases. Gut, 2010, 59, 1159-1162.	6.1	84
272	Modulation of Hepatic Fibrosis by c-Jun-N-Terminal Kinase Inhibition. Gastroenterology, 2010, 138, 347-359.	0.6	195
273	Oral Methylthioadenosine Administration Attenuates Fibrosis and Chronic Liver Disease Progression in Mdr2â~/â~ Mice. PLoS ONE, 2010, 5, e15690.	1.1	23
274	Impairment of pre-mRNA splicing in liver disease: Mechanisms and consequences. World Journal of Gastroenterology, 2010, 16, 3091.	1.4	40
275	Wilms' Tumor 1 Gene Expression in Hepatocellular Carcinoma Promotes Cell Dedifferentiation and Resistance to Chemotherapy. Cancer Research, 2009, 69, 1358-1367.	0.4	46
276	Inflammation and Liver Cancer. Annals of the New York Academy of Sciences, 2009, 1155, 206-221.	1.8	329
277	The epidermal growth factor receptor ligand amphiregulin is a negative regulator of hepatic acute-phase gene expression. Journal of Hepatology, 2009, 51, 1010-1020.	1.8	17
278	Amphiregulin Induces the Alternative Splicing of p73 Into Its Oncogenic Isoform Î"Ex2p73 in Human Hepatocellular Tumors. Gastroenterology, 2009, 137, 1805-1815.e4.	0.6	64
279	The Epidermal Growth Factor Receptor: A Link Between Inflammation and Liver Cancer. Experimental Biology and Medicine, 2009, 234, 713-725.	1.1	107
280	The epidermal growth factor receptor ligand amphiregulin participates in the development of mouse liver fibrosis. Hepatology, 2008, 48, 1251-1261.	3.6	124
281	Redox regulation of methylthioadenosine phosphorylase in liver cells: molecular mechanism and functional implications. Biochemical Journal, 2008, 411, 457-465.	1.7	16
282	Novel Pharmacologic Strategies to Protect the Liver from Ischemia-Reperfusion Injury. Recent Patents on Cardiovascular Drug Discovery, 2008, 3, 9-18.	1.5	16
283	Transcription of the MAT2A gene, coding for methionine adenosyltransferase, is up-regulated by E2F and Sp1 at a chromatin level during proliferation of liver cells. International Journal of Biochemistry and Cell Biology, 2007, 39, 842-850.	1.2	23
284	Amphiregulin: A new growth factor in hepatocarcinogenesis. Cancer Letters, 2007, 254, 30-41.	3.2	80
285	Hepatitis B Virus X Protein and Pin1 in Liver Cancer: "Les Liaisons Dangereusesâ€; Gastroenterology, 2007, 132, 1180-1183.	0.6	12
286	The response of the hepatocyte to ischemia. Liver International, 2007, 27, 6-16.	1.9	93
287	New molecular targets for hepatocellular carcinoma: the ErbB1 signaling system. Liver International, 2007, 27, 174-185.	1.9	59
288	Molecular Profiling of Hepatocellular Carcinoma in Mice with a Chronic Deficiency of HepaticS-Adenosylmethionine:Â Relevance in Human Liver Diseases. Journal of Proteome Research, 2006, 5, 944-953.	1.8	18

#	Article	IF	Citations
289	Up-regulation of the anti-inflammatory adipokine adiponectin in acute liver failure in mice. Journal of Hepatology, 2006, 44, 537-543.	1.8	88
290	Id2 leaves the chromatin of the E2F4–p130-controlled c-myc promoter during hepatocyte priming for liver regeneration. Biochemical Journal, 2006, 398, 431-437.	1.7	37
291	Liver injury and liver protection: mechanisms and novel treatment strategies. Liver International, 2006, 26, 902-903.	1.9	5
292	New therapies for hepatocellular carcinoma. Oncogene, 2006, 25, 3866-3884.	2.6	362
293	Methylthioadenosine reverses brain autoimmune disease. Annals of Neurology, 2006, 60, 323-334.	2.8	65
294	Differential regulation of the JNK/AP-1 pathway by S-adenosylmethionine and methylthioadenosine in primary rat hepatocytes versus HuH7 hepatoma cells. American Journal of Physiology - Renal Physiology, 2006, 290, G1186-G1193.	1.6	11
295	Cardiotrophin-1 defends the liver against ischemia-reperfusion injury and mediates the protective effect of ischemic preconditioning. Journal of Experimental Medicine, 2006, 203, 2809-2815.	4.2	62
296	Amphiregulin Contributes to the Transformed Phenotype of Human Hepatocellular Carcinoma Cells. Cancer Research, 2006, 66, 6129-6138.	0.4	125
297	Systemic infusion of angiotensin II exacerbates liver fibrosis in bile duct-ligated rats. Hepatology, 2005, 41, 1046-1055.	3.6	143
298	Oxidation of specific methionine and tryptophan residues of apolipoprotein A-I in hepatocarcinogenesis. Proteomics, 2005, 5, 4964-4972.	1.3	30
299	Influence of Impaired Liver Methionine Metabolism on the Development of Vascular Disease and Inflammation. Current Medicinal Chemistry Cardiovascular and Hematological Agents, 2005, 3, 267-281.	1.7	18
300	Novel Role for Amphiregulin in Protection from Liver Injury. Journal of Biological Chemistry, 2005, 280, 19012-19020.	1.6	115
301	The Role of p70S6K in Hepatic Stellate Cell Collagen Gene Expression and Cell Proliferation. Journal of Biological Chemistry, 2005, 280, 13374-13382.	1.6	85
302	Amphiregulin: An early trigger of liver regeneration in mice. Gastroenterology, 2005, 128, 424-432.	0.6	173
303	Liver Fibrogenesis: A New Role for the Renin–Angiotensin System. Antioxidants and Redox Signaling, 2005, 7, 1346-1355.	2.5	141
304	Liver fibrosis. Journal of Clinical Investigation, 2005, 115, 209-218.	3.9	4,210
305	Impaired liver regeneration in mice lacking methionine adenosyltransferase 1A. FASEB Journal, 2004, 18, 914-916.	0.2	68
306	5′-methylthioadenosine modulates the inflammatory response to endotoxin in mice and in rat hepatocytes. Hepatology, 2004, 39, 1088-1098.	3.6	91

#	Article	IF	Citations
307	Methylthioadenosine. International Journal of Biochemistry and Cell Biology, 2004, 36, 2125-2130.	1.2	192
308	Methylthioadenosine phosphorylase gene expression is impaired in human liver cirrhosis and hepatocarcinoma. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2004, 1690, 276-284.	1.8	32
309	177 5′-Methylthioadenosine modulates the inflammatory response to bacterial lipopolysaccharide. Journal of Hepatology, 2004, 40, 58.	1.8	0
310	Genetic polymorphisms and the progression of liver fibrosis: A critical appraisal. Hepatology, 2003, 37, 493-503.	3.6	298
311	Expression of Wilms' tumor suppressor in the liver with cirrhosis: Relation to hepatocyte nuclear factor 4 and hepatocellular function. Hepatology, 2003, 38, 148-157.	3.6	56
312	Human hepatic stellate cells show features of antigen-presenting cells and stimulate lymphocyte proliferation. Hepatology, 2003, 38, 919-929.	3.6	186
313	Activated human hepatic stellate cells express the renin-angiotensin system and synthesize angiotensin II. Gastroenterology, 2003, 125, 117-125.	0.6	317
314	Can we identify liver fibrosis in HCV-infected patients without a liver biopsy?. Current Hepatitis Reports, 2003, 2, 145-151.	0.3	5
315	Methionine adenosyltransferase II \hat{l}^2 subunit gene expression provides a proliferative advantage in human hepatoma. Gastroenterology, 2003, 124, 940-948.	0.6	72
316	Functional proteomics of nonalcoholic steatohepatitis: Mitochondrial proteins as targets of S-adenosylmethionine. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3065-3070.	3.3	154
317	L-Methionine Availability Regulates Expression of the Methionine Adenosyltransferase 2A Gene in Human Hepatocarcinoma Cells. Journal of Biological Chemistry, 2003, 278, 19885-19890.	1.6	72
318	GARBAN: genomic analysis and rapid biological annotation of cDNA microarray and proteomic data. Bioinformatics, 2003, 19, 2158-2160.	1.8	27
319	Prolonged infusion of angiotensin II into normal rats induces stellate cell activation and proinflammatory events in liver. American Journal of Physiology - Renal Physiology, 2003, 285, G642-G651.	1.6	119
320	NADPH oxidase signal transduces angiotensin II in hepatic stellate cells and is critical in hepatic fibrosis. Journal of Clinical Investigation, 2003, 112, 1383-1394.	3.9	482
321	Sâ€Adenosylmethionine: a control switch that regulates liver function. FASEB Journal, 2002, 16, 15-26.	0.2	383
322	NO sensitizes rat hepatocytes to proliferation by modifying S-adenosylmethionine levels. Gastroenterology, 2002, 122, 1355-1363.	0.6	77
323	Spontaneous oxidative stress and liver tumors in mice lacking methionine adenosyltransferase 1A. FASEB Journal, 2002, 16, 1292-1294.	0.2	259
324	Altered liver gene expression in CCl4-cirrhotic rats is partially normalized by insulin-like growth factor-I. International Journal of Biochemistry and Cell Biology, 2002, 34, 242-252.	1.2	40

#	Article	IF	CITATIONS
325	Regulation of Mammalian Liver Methionine Adenosyltransferase. Journal of Nutrition, 2002, 132, 2377S-2381S.	1.3	40
326	Importance of a deficiency in S-adenosyl-l-methionine synthesis in the pathogenesis of liver injury,,,. American Journal of Clinical Nutrition, 2002, 76, 1177S-1182S.	2.2	80
327	S-Adenosylmethionine revisited. Alcohol, 2002, 27, 163-167.	0.8	46
328	S-adenosylmethionine and methylthioadenosine are antiapoptotic in cultured rat hepatocytes but proapoptotic in human hepatoma cells. Hepatology, 2002, 35, 274-280.	3.6	118
329	Importance of a deficiency in S-adenosyl-L-methionine synthesis in the pathogenesis of liver injury. American Journal of Clinical Nutrition, 2002, 76, 1177S-82S.	2.2	35
330	S-Adenosylmethionine modulates inducible nitric oxide synthase gene expression in rat liver and isolated hepatocytes. Journal of Hepatology, 2001, 35, 692-699.	1.8	55
331	Methionine adenosyltransferase 1A knockout mice are predisposed to liver injury and exhibit increased expression of genes involved in proliferation. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 5560-5565.	3.3	403
332	Hepatocyte growth factor induces MAT2A expression and histone acetylation in rat hepatocytes: role in liver regeneration 1. FASEB Journal, 2001, 15, 1248-1250.	0.2	56
333	In vitro and in vivo activation of rat hepatic stellate cells results in de novo expression of L-type voltage-operated calcium channels. Hepatology, 2001, 33, 956-962.	3.6	57
334	NO, SNO and low O2. Nature Medicine, 2001, 7, 1107-1108.	15.2	3
334	NO, SNO and low O2. Nature Medicine, 2001, 7, 1107-1108. Inhibition of liver methionine adenosyltransferase gene expression by 3-methylcolanthrene: protective effect of S-adenosylmethionine. Biochemical Pharmacology, 2001, 61, 1119-1128.	2.0	24
	Inhibition of liver methionine adenosyltransferase gene expression by 3-methylcolanthrene: protective		
335	Inhibition of liver methionine adenosyltransferase gene expression by 3-methylcolanthrene: protective effect of S-adenosylmethionine. Biochemical Pharmacology, 2001, 61, 1119-1128.	2.0	24
335 336	Inhibition of liver methionine adenosyltransferase gene expression by 3-methylcolanthrene: protective effect of S-adenosylmethionine. Biochemical Pharmacology, 2001, 61, 1119-1128. Hyperhomocysteinemia in Liver Cirrhosis. Hypertension, 2001, 38, 1217-1221. Hepatic Stellate Cells as a Target for the Treatment of Liver Fibrosis. Seminars in Liver Disease, 2001, 21,	2.0	97
335 336 337	Inhibition of liver methionine adenosyltransferase gene expression by 3-methylcolanthrene: protective effect of S-adenosylmethionine. Biochemical Pharmacology, 2001, 61, 1119-1128. Hyperhomocysteinemia in Liver Cirrhosis. Hypertension, 2001, 38, 1217-1221. Hepatic Stellate Cells as a Target for the Treatment of Liver Fibrosis. Seminars in Liver Disease, 2001, 21, 437-452.	2.0 1.3	2497444
335 336 337 338	Inhibition of liver methionine adenosyltransferase gene expression by 3-methylcolanthrene: protective effect of S-adenosylmethionine. Biochemical Pharmacology, 2001, 61, 1119-1128. Hyperhomocysteinemia in Liver Cirrhosis. Hypertension, 2001, 38, 1217-1221. Hepatic Stellate Cells as a Target for the Treatment of Liver Fibrosis. Seminars in Liver Disease, 2001, 21, 437-452. Hepatorenal syndrome. Current Treatment Options in Gastroenterology, 2000, 3, 445-450. Liverâ€specific methionine adenosyltransferase ⟨i⟩MAT1A⟨i⟩ gene expression is associated with a specific pattern of promoter methylation and histone acetylation: implications for ⟨i⟩MAT1A⟨i⟩ silencing	2.0 1.3 1.8	249744463
335 336 337 338	Inhibition of liver methionine adenosyltransferase gene expression by 3-methylcolanthrene: protective effect of S-adenosylmethionine. Biochemical Pharmacology, 2001, 61, 1119-1128. Hyperhomocysteinemia in Liver Cirrhosis. Hypertension, 2001, 38, 1217-1221. Hepatic Stellate Cells as a Target for the Treatment of Liver Fibrosis. Seminars in Liver Disease, 2001, 21, 437-452. Hepatorenal syndrome. Current Treatment Options in Gastroenterology, 2000, 3, 445-450. Liverâ€specific methionine adenosyltransferase ⟨i⟩ MAT1A⟨i⟩ gene expression is associated with a specific pattern of promoter methylation and histone acetylation: implications for ⟨i⟩ MAT1A⟨i⟩ silencing during transformation. FASEB Journal, 2000, 14, 95-102. Sâ€Adenosylmethionine regulatesMAT1AandMAT2Agene expression in cultured rat hepatocytes: a new role for Sâ€adenosylmethionine in the maintenance of the differentiated status of the liver. FASEB	2.0 1.3 1.8 0.3	24974446389

#	Article	IF	Citations
343	Identification of argininosuccinate lyase as a hypoxia-responsive gene in rat hepatocytes. Journal of Hepatology, 2000, 33, 709-715.	1.8	5
344	The product of the cph oncogene is a truncated, nucleotide-binding protein that enhances cellular survival to stress. Oncogene, 1999, 18, 689-701.	2.6	21
345	Induction of TIMP-1 expression in rat hepatic stellate cells and hepatocytes: a new role for homocysteine in liver fibrosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1999, 1455, 12-22.	1.8	68
346	Specific interaction of methionine adenosyltransferase with free radicals. BioFactors, 1998, 8, 27-32.	2.6	42
347	Secretion of neu differentiation factor–like polypeptides bycph-transformed fibroblasts: Cloning and characterization of Syrian hamster neuregulin cDNAs. , 1998, 21, 156-163.		4
348	Transformed but not normal hepatocytes express UCP2. FEBS Letters, 1998, 439, 55-58.	1.3	55
349	Regulation by hypoxia of methionine adenosyltransferase activity and gene expression in rat hepatocytes. Gastroenterology, 1998, 114, 364-371.	0.6	100
350	Altered processing of precursor transcripts and increased levels of the subunit I of mitochondrial cytochrome c oxidase in Syrian hamster fetal cells initiated with ionizing radiation. Carcinogenesis, 1997, 18, 1569-1575.	1.3	11
351	Glycosyl-phosphatidylinositol-phospholipase Type D: A Possible Candidate for the Generation of Second Messengers. Biochemical and Biophysical Research Communications, 1997, 233, 432-437.	1.0	42
352	î"-9-Tetrahydrocannabinol increases prodynorphin and proenkephalin gene expression in the spinal cord of the rat. Life Sciences, 1997, 61, PL39-PL43.	2.0	75
353	Regulation of rat liver S-adenosylmethionine synthetase during septic shock: Role of nitric oxide. Hepatology, 1997, 25, 391-396.	3.6	1
354	Isolation and Partial Characterisation of Insulin-Mimetic Inositol Phosphoglycans from Human Liver. Biochemical and Molecular Medicine, 1997, 61, 214-228.	1.5	48
355	Increased manganese superoxide dismutase activity, protein, and mRNA levels and concurrent induction of tumor necrosis factor $\hat{l}\pm$ in radiation-initiated Syrian hamster cells. , 1996, 17, 175-180.		10
356	Cloning and sequencing of the cDNA for thecph oncogene from neoplastic hamster fibroblasts reveal partial homology with thedbl exchange factor. Radiation Oncology Investigations, 1995, 3, 262-267.	1.3	4
357	Isolation and characterization of SpTRK, a gene from schizosaccharomyces pombe predicted to encode a K+ transporter protein. Gene, 1995, 161, 97-101.	1.0	22
358	Functional expression of human poly(ADP-ribose) polymerase inSchizosaccharomyces pombe results in mitotic delay at G1, increased mutation rate, and sensitization to radiation. Yeast, 1994, 10, 1003-1017.	0.8	14
359	Mannosamine is an unspecific inhibitor of glycosyl-phosphatidylinositol biosynthesis in T-lymphocytes. Biochemical Society Transactions, 1994, 22, 11S-11S.	1.6	1
360	Brain-Derived Neurotrophic Factor and Neurotrophin-3 Induce Cell Proliferation in the Cochleovestibular Ganglion through a Glycosyl-Phosphatidylinositol Signaling System. Developmental Biology, 1993, 159, 257-265.	0.9	42

#	Article	IF	CITATIONS
361	Brain-Derived Neurotrophic Factor and Neurotrophin-3 Support the Survival and Neuritogenesis Response of Developing Cochleovestibular Ganglion Neurons. Developmental Biology, 1993, 159, 266-275.	0.9	98
362	Glycosyl-Phosphatidylinositol: Role in Neurotrophic Factors Signalling., 1993,, 103-113.		0
363	A phosphatidylinositol-linkage-deficient T-cell mutant contains insulin-sensitive glycosyl-phosphatidylinositol. Biochemical Journal, 1992, 282, 681-686.	1.7	8
364	An inositol phosphoglycan stimulates glycolysis in human platelets. Biochemical and Biophysical Research Communications, 1991, 180, 1041-1047.	1.0	6
365	Inositol phospho-oligosaccharide stimulates cell proliferation in the early developing inner ear. Developmental Biology, 1991, 143, 432-435.	0.9	21
366	Glycosyl-phosphatidylinositol/inositol phosphoglycan: a signaling system for the low-affinity nerve growth factor receptor Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 8016-8019.	3 . 3	60
367	Insulin-Like Effects of Inositol Phosphate-Glycan on Messenger RNA Expression in Rat Hepatocytes. Molecular Endocrinology, 1991, 5, 1062-1068.	3.7	22
368	Insulin-induced phospho-oligosaccharide stimulates amino acid transport in isolated rat hepatocytes. Biochemical Journal, 1990, 267, 541-544.	1.7	20
369	A phospho-oligosaccharide can reproduce the stimulatory effect of insulin on glycolytic flux in human fibroblasts. Biochemical and Biophysical Research Communications, 1990, 166, 765-771.	1.0	16
370	Pathogenesis of Hepatic Fibrosis. , 0, , 658-679.		2