M Giovanni Turchini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7513224/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fish oil replacement in finfish nutrition. Reviews in Aquaculture, 2009, 1, 10-57.	9.0	959
2	Thoughts for the Future of Aquaculture Nutrition: Realigning Perspectives to Reflect Contemporary Issues Related to Judicious Use of Marine Resources in Aquafeeds. North American Journal of Aquaculture, 2019, 81, 13-39.	1.4	209
3	Fatty acid metabolism (desaturation, elongation and β-oxidation) in rainbow trout fed fish oil- or linseed oil-based diets. British Journal of Nutrition, 2009, 102, 69-81.	2.3	195
4	How does high DHA fish oil affect health? A systematic review of evidence. Critical Reviews in Food Science and Nutrition, 2019, 59, 1684-1727.	10.3	165
5	Effects of alternative dietary lipid sources on performance, tissue chemical composition, mitochondrial fatty acid oxidation capabilities and sensory characteristics in brown trout (Salmo) Tj ETQq1 1 0.78	84 3. ∄4 rgB⁻	Г <mark>#@s</mark> erlock
6	Fish oil replacement with different vegetable oils in Murray cod: Evidence of an "omega-3 sparing effect―by other dietary fatty acids. Aquaculture, 2011, 315, 250-259.	3.5	148
7	Omega-3 long chain fatty acid "bioavailability― A review of evidence and methodological considerations. Progress in Lipid Research, 2014, 56, 92-108.	11.6	137
8	Algae in Fish Feed: Performances and Fatty Acid Metabolism in Juvenile Atlantic Salmon. PLoS ONE, 2015, 10, e0124042.	2.5	127
9	Responsible Aquaculture and Trophic Level Implications to Global Fish Supply. Reviews in Fisheries Science, 2009, 18, 94-105.	2.1	124
10	Effects of dietary oil source on growth and fillet fatty acid composition of Murray cod, Maccullochella peelii peelii. Aquaculture, 2006, 253, 547-556.	3.5	121
11	Recirculating aquaculture systems (RAS): Environmental solution and climate change adaptation. Journal of Cleaner Production, 2021, 297, 126604.	9.3	118
12	Are fish what they eat? A fatty acid's perspective. Progress in Lipid Research, 2020, 80, 101064.	11.6	111
13	Alien Species in Aquaculture and Biodiversity: A Paradox in Food Production. Ambio, 2009, 38, 24-28.	5.5	110
14	Effects of dietary lipid source on fillet chemical composition, flavour volatile compounds and sensory characteristics in the freshwater fish tench (Tinca tinca L.). Food Chemistry, 2007, 102, 1144-1155.	8.2	100
15	Effects of different dietary microalgae on survival, growth, settlement and fatty acid composition of blue mussel (Mytilus galloprovincialis) larvae. Aquaculture, 2010, 309, 115-124.	3.5	98
16	Fatty acid metabolism in the freshwater fish Murray cod (Maccullochella peelii peelii) deduced by the whole-body fatty acid balance method. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2006, 144, 110-118.	1.6	83
17	A Whole Body, In Vivo, Fatty Acid Balance Method to Quantify PUFA Metabolism (Desaturation,) Tj ETQq1 1 0.78	4314 rgBT 1.7	Overlock 76

18 The Health Benefit of Seafood. Veterinary Research Communications, 2003, 27, 507-512.

1.6 75

#	Article	IF	CITATIONS
19	Dietary Lipid Source Modulates in Vivo Fatty Acid Metabolism in the Freshwater Fish, Murray Cod (Maccullochella peelii peelii). Journal of Agricultural and Food Chemistry, 2007, 55, 1582-1591.	5.2	75

Fatty acid composition and volatile compounds of caviar from farmed white sturgeon (Acipenser) Tj ETQq0 0 0 rgB $_{5.4}^{1/0}$ /Overlock 10 Tf 50

21	Traceability Issues in Fishery and Aquaculture Products. Veterinary Research Communications, 2003, 27, 497-505.	1.6	74
22	Uncoupling EPA and DHA in Fish Nutrition: Dietary Demand is Limited in Atlantic Salmon and Effectively Met by DHA Alone. Lipids, 2016, 51, 399-412.	1.7	73
23	efficiency, fat deposition and the efficiency of a finishing strategy. Aquaculture, 2011, 320, 82-90.	3.5	72
24	Determination of astaxanthin stereoisomers and colour attributes in flesh of rainbow trout (Oncorhynchus mykiss) as a tool to distinguish the dietary pigmentation source. Food Additives and Contaminants, 2006, 23, 1056-1063.	2.0	69
25	Modification of tissue fatty acid composition in Murray cod (Maccullochella peelii peelii, Mitchell) resulting from a shift from vegetable oil diets to a fish oil diet. Aquaculture Research, 2006, 37, 570-585.	1.8	69
26	Transforming salmonid aquaculture from a consumer to a producer of long chain omega-3 fatty acids. Food Chemistry, 2011, 124, 609-614.	8.2	67
27	Effects of fish oil substitution with a mix blend vegetable oil on nutrient digestibility in Murray cod, Maccullochella peelii peelii. Aquaculture, 2007, 269, 447-455.	3.5	65
28	LCâ€PUFA Biosynthesis in Rainbow Trout is Substrate Limited: Use of the Whole Body Fatty Acid Balance Method and Different 18:3nâ€3/18:2nâ€6 Ratios. Lipids, 2011, 46, 1111-1127.	1.7	65
29	A short-term n-3 DPA supplementation study in humans. European Journal of Nutrition, 2013, 52, 895-904.	3.9	65
30	Fish Oil Replacement in Current Aquaculture Feed: Is Cholesterol a Hidden Treasure for Fish Nutrition?. PLoS ONE, 2013, 8, e81705.	2.5	64
31	Effects of dietary lipid sources on flavour volatile compounds of brown trout (Salmo trutta L.) fillet. Journal of Applied Ichthyology, 2004, 20, 71-75.	0.7	58
32	Effect of diet, sex and age on fatty acid metabolism in broiler chickens: <i>n-</i> 3 and <i>n-</i> 6 PUFA. British Journal of Nutrition, 2010, 104, 189-197.	2.3	56
33	Towards Understanding the Impacts of the Pet Food Industry on World Fish and Seafood Supplies. Journal of Agricultural and Environmental Ethics, 2008, 21, 459-467.	1.7	55
34	Jumping on the Omega-3 Bandwagon: Distinguishing the Role of Long-Chain and Short-Chain Omega-3 Fatty Acids. Critical Reviews in Food Science and Nutrition, 2012, 52, 795-803.	10.3	55
35	Estimation of Nitrogen and Phosphorus in Effluent from the Striped Catfish Farming Sector in the Mekong Delta, Vietnam. Ambio, 2010, 39, 504-514.	5.5	53
36	Arachidonic Acid and Eicosapentaenoic Acid Metabolism in Juvenile Atlantic Salmon as Affected by Water Temperature. PLoS ONE, 2015, 10, e0143622.	2.5	53

#	Article	IF	CITATIONS
37	Dietary ALA, But not LNA, Increase Growth, Reduce Inflammatory Processes, and Increase Antiâ€Oxidant Capacity in the Marine Finfish <i>Larimichthys crocea</i> . Lipids, 2015, 50, 149-163.	1.7	53
38	Growth performance, feed efficiency and fatty acid composition of juvenile Murray cod, Maccullochella peelii peelii, fed graded levels of canola and linseed oil. Aquaculture Nutrition, 2007, 13, 335-350.	2.7	51
39	Towards the optimization of performance of Atlantic salmon reared at different water temperatures via the manipulation of dietary ARA/EPA ratio. Aquaculture, 2016, 450, 48-57.	3.5	50
40	Effect of diet, sex and age on fatty acid metabolism in broiler chickens: SFA and MUFA. British Journal of Nutrition, 2010, 104, 204-213.	2.3	49
41	Genetically improved farmed Nile tilapia and red hybrid tilapia showed differences in fatty acid metabolism when fed diets with added fish oil or a vegetable oil blend. Aquaculture, 2011, 312, 126-136.	3.5	48
42	Lipid characterisation and distribution in the fillet of the farmed Australian native fish, Murray cod (Maccullochella peelii peelii). Food Chemistry, 2007, 102, 796-807.	8.2	47
43	Finishing diets stimulate compensatory growth: results of a study on Murray cod, Maccullochella peelii. Aquaculture Nutrition, 2007, 13, 351-360.	2.7	47
44	Fatty acid metabolism in European sea bass (Dicentrarchus labrax): effects of n-6 PUFA and MUFA in fish oil replaced diets. Fish Physiology and Biochemistry, 2013, 39, 941-955.	2.3	47
45	acid metabolism. Aquaculture Nutrition, 2013, 19, 82-94.	2.7	46
46	metabolism and in vivo fatty acid bioconversion. Aquaculture, 2011, 322-323, 99-108.	3.5	45
47	Metabolic fate (absorption, <i>β</i> -oxidation and deposition) of long-chain <i>n</i> -3 fatty acids is affected by sex and by the oil source (krill oil or fish oil) in the rat. British Journal of Nutrition, 2015, 114, 684-692.	2.3	43
48	Fatty Acid‧pecific Alterations in Leptin, PPARα, and CPTâ€1 Gene Expression in the Rainbow Trout. Lipids, 2014, 49, 1033-1046.	1.7	42
49	Tallow in Atlantic salmon feed. Aquaculture, 2014, 422-423, 98-108.	3.5	42
50	Can dietary lipid source circadian alternation improve omega-3 deposition in rainbow trout?. Aquaculture, 2010, 300, 148-155.	3.5	40
51	Δ-6 Desaturase Substrate Competition: Dietary Linoleic Acid (18â^¶2n-6) Has Only Trivial Effects on α-Linolenic Acid (18â^¶3n-3) Bioconversion in the Teleost Rainbow Trout. PLoS ONE, 2013, 8, e57463.	2.5	40
52	Fish out, plastic in: Global pattern of plastics in commercial fishmeal. Aquaculture, 2021, 534, 736316.	3.5	40
53	Traceability and Discrimination among Differently Farmed Fish: A Case Study on Australian Murray Cod. Journal of Agricultural and Food Chemistry, 2009, 57, 274-281.	5.2	38
54	Effects of Dietary α-Linolenic Acid (18:3n-3)/Linoleic Acid (18:2n-6) Ratio on Fatty Acid Metabolism in Murray Cod (Maccullochella peelii peelii). Journal of Agricultural and Food Chemistry, 2011, 59, 1020-1030.	5.2	38

#	Article	IF	CITATIONS
55	Effect of crude oil extracts from trout offal as a replacement for fish oil in the diets of the Australian native fish Murray cod Maccullochella peelii peelii. Aquaculture Research, 2003, 34, 697-708.	1.8	37
56	Apparent in Vivo Δ-6 Desaturase Activity, Efficiency, and Affinity Are Affected by Total Dietary C ₁₈ PUFA in the Freshwater Fish Murray Cod. Journal of Agricultural and Food Chemistry, 2009, 57, 4381-4390.	5.2	37
57	Effects of dietary α-linolenic acid (18:3nâ^'3)/linoleic acid (18:2nâ^'6) ratio on growth performance, fillet fatty acid profile and finishing efficiency in Murray cod. Aquaculture, 2010, 309, 222-230.	3.5	37
58	n-3 LC-PUFA deposition efficiency and appetite-regulating hormones are modulated by the dietary lipid source during rainbow trout grow-out and finishing periods. Fish Physiology and Biochemistry, 2014, 40, 577-593.	2.3	36
59	Fatty acids and beyond: Fillet nutritional characterisation of rainbow trout (Oncorhynchus mykiss) fed different dietary oil sources. Aquaculture, 2018, 491, 391-397.	3.5	36
60	A comparison of in-vivo and in-vitro methods for assessing the digestibility of poultry by-product meals using barramundi (lates calcarifer); impacts of cooking temperature and raw material freshness. Aquaculture, 2019, 498, 187-200.	3.5	35
61	Changes in the nutritional composition of captive early-mid stage Panulirus ornatus phyllosoma over ecdysis and larval development. Aquaculture, 2014, 434, 159-170.	3.5	34
62	Echium Oil Provides No Benefit over Linseed Oil for (n-3) Long-Chain PUFA Biosynthesis in Rainbow Trout. Journal of Nutrition, 2012, 142, 1449-1455.	2.9	33
63	Monola oil versus canola oil as a fish oil replacer in rainbow trout feeds: Effects on growth, fatty acid metabolism and final eating quality. Food Chemistry, 2013, 141, 1335-1344.	8.2	33
64	Nutritional regulation of long-chain PUFA biosynthetic genes in rainbow trout (<i>Oncorhynchus) Tj ETQq0 0 0 r</i>	gBT /Overl 2.3	ock 10 Tf 50
65	ls Australian seaweed worth eating? Nutritional and sensorial properties of wild-harvested Australian versus commercially available seaweeds. Journal of Applied Phycology, 2019, 31, 709-724.	2.8	32
66	Starch in aquafeeds: the benefits of a high amylose to amylopectin ratio and resistant starch content in diets for the carnivorous fish, largemouth bass (<i>Micropterus salmoides</i>). British Journal of Nutrition, 2020, 124, 1145-1155.	2.3	32
67	Dietary n-6/n-3 LC-PUFA ratio, temperature and time interactions on nutrients and fatty acids digestibility in Atlantic salmon. Aquaculture, 2015, 436, 160-166.	3.5	30
68	Organic aquaculture productivity, environmentalÂsustainability, and food security: insights from organic agriculture. Food Security, 2020, 12, 1253-1267.	5.3	30
69	lsolation and Functional Characterisation of a fads2 in Rainbow Trout (Oncorhynchus mykiss) with Δ5 Desaturase Activity. PLoS ONE, 2016, 11, e0150770.	2.5	29
70	The evolution of the blue-green revolution of rice-fish cultivation for sustainable food production. Sustainability Science, 2021, 16, 1375-1390.	4.9	29
71	Biometric, nutritional and sensory changes in intensively farmed Murray cod (Maccullochella peelii) Tj ETQq1 1 0	.784314 rg 8.2	gBŢ _/ Overloc

72The Expression of Pre- and Postcopulatory Sexually Selected Traits Reflects Levels of Dietary Stress in
Guppies. PLoS ONE, 2014, 9, e105856.2.526

#	Article	IF	CITATIONS
73	Bio-economical and ethical impacts of alien finfish culture in European inland waters. Aquaculture International, 2008, 16, 243-272.	2.2	25
74	Dietary arachidonic acid and the impact on growth performance, health and tissues fatty acids in Malabar red snapper (Lutjanus malabaricus) fingerlings. Aquaculture, 2020, 519, 734757.	3.5	25
75	Growth and product quality of European eel (Anguilla anguilla) as affected by dietary protein and lipid sources. Journal of Applied Ichthyology, 2003, 19, 74-78.	0.7	24
76	Impact of Fermented Mulberry Leaf and Fish Offal in Diet Formulation of Indian Major Carp (Labeo) Tj ETQq0 0 0	rgBT/Ove 1.0	rlock 10 Tf 50 24
77	Retro-engineering the protein sparing effect to preserve n-3 LC-PUFA from catabolism and optimise fish oil utilisation: A preliminary case study on juvenile Atlantic salmon. Aquaculture, 2017, 468, 184-192.	3.5	24
78	The impact of dietary protein: lipid ratio on growth performance, fatty acid metabolism, product quality and waste output in Atlantic salmon (Salmo salar). Aquaculture, 2019, 501, 191-201.	3.5	24
79	Effects of dietary iron supplementation on growth performance, fatty acid composition and fatty acid metabolism in rainbow trout (Oncorhynchus mykiss) fed vegetable oil based diets. Aquaculture, 2012, 342-343, 80-88.	3.5	23
80	â€~Aquafeed 3.0': creating a more resilient aquaculture industry with a circular bioeconomy framework. Reviews in Aquaculture, 2021, 13, 1156-1158.	9.0	22
81	Arachidonic acid matters. Reviews in Aquaculture, 2022, 14, 1912-1944.	9.0	22
82	Effect of dietary saturated and monounsaturated fatty acids in juvenile barramundi <i>Lates calcarifer</i> . Aquaculture Nutrition, 2017, 23, 264-275.	2.7	21
83	Immunohistochemical and immunological detection of ghrelin and leptin in rainbow trout <i>Oncorhynchus mykiss</i> and murray cod <i>Maccullochella peelii peelii</i> as affected by different dietary fatty acids. Microscopy Research and Technique, 2012, 75, 771-780.	2.2	20
84	Eicosapentaenoic Acid, Arachidonic Acid and Eicosanoid Metabolism in Juvenile Barramundi <i>Lates calcarifer</i> . Lipids, 2016, 51, 973-988.	1.7	20
85	Barrens of gold: gonad conditioning of an overabundant sea urchin. Aquaculture Environment Interactions, 2018, 10, 345-361.	1.8	18
86	The lipids. , 2022, , 303-467.		18
87	Comparison of the bioavailability of docosapentaenoic acid (DPA, 22:5n-3) and eicosapentaenoic acid (EPA, 20:5n-3) in the rat. Prostaglandins Leukotrienes and Essential Fatty Acids, 2014, 90, 23-26.	2.2	17
88	Experimental reduction in dietary omega-3 polyunsaturated fatty acids depresses sperm competitiveness. Biology Letters, 2014, 10, 20140623.	2.3	17

89	Rapid effects of essential fatty acid deficiency on growth and development parameters and transcription of key fatty acid metabolism genes in juvenile barramundi (<i>Lates calcarifer</i>). British Journal of Nutrition, 2015, 114, 1784-1796.	2.3	17	
	Viability of tallow inclusion in Atlantic calmon dist, as accessed by an on form grow out trial			

90Viability of tallow inclusion in Atlantic salmon diet, as assessed by an on-farm grow out trial.3.51690Aquaculture, 2016, 451, 289-297.3.516

#	Article	IF	CITATIONS
91	A systematic review and analysis of long-term growth trials on the effect of diet on omega-3 fatty acid levels in the fillet tissue of post-smolt Atlantic salmon. Aquaculture, 2020, 516, 734643.	3.5	16
92	Towards defining optimal dietary protein levels for male and female sub-adult Chinese mitten crab, Eriocheir sinensis reared in earthen ponds: Performances, nutrient composition and metabolism, antioxidant capacity and immunity. Aquaculture, 2021, 536, 736442.	3.5	16
93	The relative absorption of fatty acids in brown trout (Salmo trutta) fed a commercial extruded pellet coated with different lipid sources. Italian Journal of Animal Science, 2005, 4, 241-252.	1.9	15
94	Biometric, nutritional and sensory characteristic modifications in farmed Murray cod (Maccullochella peelii peelii) during the purging process. Aquaculture, 2009, 287, 354-360.	3.5	15
95	Targeted dietary micronutrient fortification modulates nâ^3 LC-PUFA pathway activity in rainbow trout (Oncorhynchus mykiss). Aquaculture, 2013, 412-413, 215-222.	3.5	15
96	A microalga is better than a commercial lipid emulsion at enhancing live feeds for an ornamental marine fish larva. Aquaculture, 2020, 523, 735203.	3.5	15
97	The omegaâ€3 sparing effect of saturated fatty acids: A reason to reconsider common knowledge of fish oil replacement. Reviews in Aquaculture, 2022, 14, 213-217.	9.0	15
98	Effects of alternate phases of fish oil and vegetable oil-based diets in Murray cod. Aquaculture Research, 2009, 40, 1123-1134.	1.8	14
99	Dietary micronutrients and in vivo n â^ 3 LC-PUFA biosynthesis in Atlantic salmon. Aquaculture, 2016, 452, 416-425.	3.5	14
100	Effects of Dietary Vitamin B ₆ Supplementation on Fillet Fatty Acid Composition and Fatty Acid Metabolism of Rainbow Trout Fed Vegetable Oil Based Diets. Journal of Agricultural and Food Chemistry, 2012, 60, 2343-2353.	5.2	13
101	Title is missing!. Turkish Journal of Fisheries and Aquatic Sciences, 2012, 12, .	0.9	13
102	Short-term food deprivation before a fish oil finishing strategy improves the deposition of n-3 LC-PUFA, but not the washing-out of C18 PUFA in rainbow trout. Aquaculture Nutrition, 2012, 18, 441-456.	2.7	13
103	a tentative estimation of feed-related production costs. Aquaculture Nutrition, 2013, 19, 95-109.	2.7	13
104	Circadian feeding schedules in gilthead sea bream (Sparus aurata) and European sea bass (Dicentrarchus labrax): A comparative approach towards improving dietary fish oil utilization and n-3 LC-PUFA metabolism. Aquaculture, 2018, 495, 806-814.	3.5	13
105	Short-term food deprivation does not improve the efficacy of a fish oil finishing strategy in Murray cod. Aquaculture Nutrition, 2009, 15, 657-666.	2.7	12
106	Fish Oil Diet Associated with Acute Reperfusion Related Hemorrhage, and with Reduced Stroke-Related Sickness Behaviors and Motor Impairment. Frontiers in Neurology, 2014, 5, 14.	2.4	12
107	What Is the Most Effective Way of Increasing the Bioavailability of Dietary Long Chain Omega-3 Fatty Acids—Daily vs. Weekly Administration of Fish Oil?. Nutrients, 2015, 7, 5628-5645.	4.1	12
108	Tamoxifen affects the histology and hepatopancreatic lipid metabolism of swimming crab Portunus trituberculatus. Aquatic Toxicology, 2019, 213, 105220.	4.0	12

#	Article	IF	CITATIONS
109	Endogenous biosynthesis of <i>n</i> -3 long-chain PUFA in Atlantic salmon. British Journal of Nutrition, 2019, 121, 1108-1123.	2.3	12
110	Effects of Dietary Phospholipids on Growth Performance, Digestive Enzymes Activity and Intestinal Health of Largemouth Bass (Micropterus salmoides) Larvae. Frontiers in Immunology, 2021, 12, 827946.	4.8	12
111	Effects of Starvation and Water Quality on the Purging Process of Farmed Murray Cod (<i>Maccullochella peelii peelii</i>). Journal of Agricultural and Food Chemistry, 2008, 56, 9037-9045.	5.2	11
112	Recovery of omega-3 profiles of cultivated abalone by dietary macroalgae supplementation. Journal of Applied Phycology, 2015, 27, 2163-2171.	2.8	11
113	The effect of marine and non-marine phospholipid rich oils when fed to juvenile barramundi (Lates) Tj ETQq1 1 C	.784314 r 3.5	gBT_/Overlock
114	Altered levels of shorter vs long-chain omega-3 fatty acids in commercial diets for market-sized Atlantic salmon reared in seawater – Effects on fatty acid composition, metabolism and product quality. Aquaculture, 2019, 499, 167-177.	3.5	11
115	Microencapsulated Tuna Oil Results in Higher Absorption of DHA in Toddlers. Nutrients, 2020, 12, 248.	4.1	11
116	Bioconversion of α-Linolenic Acid into n-3 Long-Chain Polyunsaturated Fatty Acid in Hepatocytes and Ad Hoc Cell Culture Optimisation. PLoS ONE, 2013, 8, e73719.	2.5	11
117	Testing the interactive effects of carotenoids and polyunsaturated fatty acids on ejaculate traits in the guppy <i>Poecilia reticulata</i> (Pisces: Poeciliidae). Journal of Fish Biology, 2015, 86, 1638-1643.	1.6	10
118	Defining the allometric relationship between size and individual fatty acid turnover in barramundi Lates calcarifer. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2016, 201, 79-86.	1.8	10
119	Sustainability Descriptive Labels on Farmed Salmon: Do Young Educated Consumers Like It More?. Sustainability, 2018, 10, 2397.	3.2	10
120	Iron supplementation in plant-based aquafeed: Effects on growth performance, tissue composition, iron-related serum parameters and gene expression in rainbow trout (Oncorhynchus mykiss). Aquaculture, 2022, 550, 737884.	3.5	10
121	Review on Sperm Sorting Technologies and Sperm Properties toward New Separation Methods via the Interface of Biochemistry and Material Science. Advanced Biology, 2019, 3, 1900079.	3.0	9
122	Fish Oils, Misconceptions and the Environment. American Journal of Public Health, 2013, 103, e4-e4.	2.7	8
123	Seasonal effects on growth and product quality in Atlantic salmon fed diets containing terrestrial oils as assessed by a longâ€ŧerm, onâ€farm growth trial. Aquaculture Nutrition, 2021, 27, 477-490.	2.7	8
124	Evaluation of Weaning Strategies for Intensively Reared Australian Freshwater Fish, Murray Cod, <i> Maccullochella peelii peelii</i> . Journal of the World Aquaculture Society, 2007, 38, 527-535.	2.4	7
125	Effects of the extensive culture system as finishing production strategy on biometric and chemical parameters in rainbow trout. Aquaculture Research, 2004, 35, 378-384.	1.8	6
126	Effects of PUFA-enriched Artemia on the early growth and fatty acid composition of Murray cod larvae. Aquaculture, 2019, 513, 734362.	3.5	6

M Giovanni Turchini

#	Article	IF	CITATIONS
127	Adiponectin's roles in lipid and glucose metabolism modulation in fish: Mechanisms and perspectives. Reviews in Aquaculture, 2021, 13, 2305-2321.	9.0	6
128	Poultry offal meal production conditions impact meal quality and digestibility in Atlantic salmon (Salmo salar). Aquaculture, 2021, 542, 736909.	3.5	6
129	Assessment of oxidatively generated DNA damage in rainbow trout (Oncorhynchus mykiss) fed with different lipid sources. Aquaculture, 2011, 317, 124-132.	3.5	5
130	DHA enrichment of the red earthworm Eisenia fetida for improving its potential as dietary source for aquaculture. Aquaculture, 2018, 496, 10-18.	3.5	5
131	Effects of four natural diets on the culture performance and biochemical composition of megalopa of <i>Eriocheir sinensis</i> during desalination period. Aquaculture Research, 2020, 51, 2831-2841.	1.8	4
132	Dietary fishmeal replacement with a mixedâ€blend protein evokes sexâ€specific differences on culture performance and physiological effects on Chinese mitten crab. Aquaculture Nutrition, 2020, 26, 2043-2058.	2.7	3
133	Gut transit rate in Atlantic salmon (<i>Salmo salar</i>) exposed to optimal and suboptimally high water temperatures. Aquaculture Research, 2022, 53, 4858-4868.	1.8	3
134	An Ecosystem Approach to Wild Rice-Fish Cultivation. Reviews in Fisheries Science and Aquaculture, 2021, 29, 549-565.	9.1	2
135	The climate is still changing. Reviews in Aquaculture, 2021, 13, 3-4.	9.0	2
136	n-3 LC-PUFA Enrichment Protocol for Red Earthworm, Eisenia fetida: A Cheap and Sustainable Method. Turkish Journal of Fisheries and Aquatic Sciences, 2021, 21, 333-346.	0.9	1
137	Erratum to "Genetically improved farmed Nile tilapia and red hybrid tilapia showed differences in fatty acid metabolism when fed diets with added fish oil or a vegetable oil blend―[Aquaculture 312 (2011) 126–136]. Aquaculture, 2011, 316, 143.	3.5	0
138	Beyond 2020. Reviews in Aquaculture, 2020, 12, 2008-2009.	9.0	0
139	Aquaculture research and social media: A powerful tool for dissemination or white noise?. Reviews in Aquaculture, 2022, 14, 1092-1093.	9.0	0