Feng-Zhi Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7513165/publications.pdf

Version: 2024-02-01

331670 345221 1,623 62 21 36 citations h-index g-index papers 66 66 66 1353 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	The Influence of Residue Mixing on the Decomposition of Pepper Root Residues. Agriculture (Switzerland), 2022, 12, 84.	3.1	1
2	Litter Mixing Alters Microbial Decomposer Community to Accelerate Tomato Root Litter Decomposition. Microbiology Spectrum, 2022, 10, .	3.0	27
3	The impact of root exudates, volatile organic compounds, and common mycorrhizal networks on root system architecture in root-root interactions. Journal of Plant Interactions, 2022, 17, 685-694.	2.1	7
4	Biochar stimulates tomato roots to recruit a bacterial assemblage contributing to disease resistance against $\langle i \rangle$ Fusarium $\langle i \rangle$ wilt., 2022, 1, .		9
5	Wheat cover crop alters soil microbial community and increases cucumber yield under different potassium regimes. European Journal of Agronomy, 2022, 139, 126567.	4.1	7
6	Phosphorus fertilization and intercropping interactively affect tomato and potato onion growth and rhizosphere arbuscular mycorrhizal fungal community. Archives of Agronomy and Soil Science, 2021, 67, 919-933.	2.6	11
7	Intercropping: A Substitute but Identical of Biofertilizers. , 2021, , 293-309.		1
8	Responses of Ammonia-Oxidizing Microorganisms to Intercropping Systems in Different Seasons. Agriculture (Switzerland), 2021, 11, 195.	3.1	4
9	Crop Rotation With Cress Increases Cucumber Yields by Regulating the Composition of the Rhizosphere Soil Microbial Community. Frontiers in Microbiology, 2021, 12, 631882.	3.5	19
10	Effects of shading on triterpene saponin accumulation and related gene expression of Aralia elata (Miq.) Seem. Plant Physiology and Biochemistry, 2021, 160, 166-174.	5.8	12
11	Impact of Intercropping on the Diazotrophic Community in the Soils of Continuous Cucumber Cropping Systems. Frontiers in Microbiology, 2021, 12, 630302.	3.5	6
12	Root exudates increase phosphorus availability in the tomato/potato onion intercropping system. Plant and Soil, 2021, 464, 45-62.	3.7	19
13	Palmitic acid mediated change of rhizosphere and alleviation of Fusarium wilt disease in watermelon. Saudi Journal of Biological Sciences, 2021, 28, 3616-3623.	3.8	17
14	Common mycorrhizal networks benefit to the asymmetric interspecific facilitation via K exchange in an agricultural intercropping system. Biology and Fertility of Soils, 2021, 57, 959-971.	4.3	9
15	Soil acidification mediates changes in soil bacterial community assembly processes in response to agricultural intensification. Environmental Microbiology, 2021, 23, 4741-4755.	3.8	23
16	Biochar and Intercropping With Potato–Onion Enhanced the Growth and Yield Advantages of Tomato by Regulating the Soil Properties, Nutrient Uptake, and Soil Microbial Community. Frontiers in Microbiology, 2021, 12, 695447.	3.5	25
17	Land-use conversion from open field to greenhouse cultivation differently affected the diversities and assembly processes of soil abundant and rare fungal communities. Science of the Total Environment, 2021, 788, 147751.	8.0	23
18	Repeated Application of Rice Straw Stabilizes Soil Bacterial Community Composition and Inhibits Clubroot Disease. Agriculture (Switzerland), 2021, 11, 108.	3.1	4

#	Article	IF	CITATIONS
19	Cover Crop Species Composition Alters the Soil Bacterial Community in a Continuous Pepper Cropping System. Frontiers in Microbiology, 2021, 12, 789034.	3.5	6
20	Different toxic effects of ferulic and p-hydroxybenzoic acids on cucumber seedling growth were related to their different influences on rhizosphere microbial composition. Biology and Fertility of Soils, 2020, 56, 125-136.	4.3	39
21	Exogenously applied ferulic acid and p-coumaric acid differentially affect cucumber rhizosphere Trichoderma spp. community structure and abundance. Plant, Soil and Environment, 2020, 66, 461-467.	2.2	6
22	Control of Fusarium wilt by wheat straw is associated with microbial network changes in watermelon rhizosphere. Scientific Reports, 2020, 10, 12736.	3.3	23
23	Effect of anti-fungal compound phytosphingosine in wheat root exudates on the rhizosphere soil microbial community of watermelon. Plant and Soil, 2020, 456, 223-240.	3.7	32
24	Intercropping with Potato-Onion Enhanced the Soil Microbial Diversity of Tomato. Microorganisms, 2020, 8, 834.	3.6	32
25	Gene Expression and K+ Uptake of Two Tomato Cultivars in Response to Sub-Optimal Temperature. Plants, 2020, 9, 65.	3.5	5
26	Intercropping of wheat changed cucumber rhizosphere bacterial community composition and inhibited cucumber Fusarium wilt disease. Scientia Agricola, 2020, 77, .	1.2	10
27	Rhizosphere bacterial community in watermelon-wheat intercropping was more stable than in watermelon monoculture system under Fusarium oxysporum f. sp. niveum invasion. Plant and Soil, 2019, 445, 369-381.	3.7	21
28	Green manures of Indian mustard and wild rocket enhance cucumber resistance to Fusarium wilt through modulating rhizosphere bacterial community composition. Plant and Soil, 2019, 441, 283-300.	3.7	26
29	Treatment With Wheat Root Exudates and Soil Microorganisms From Wheat/Watermelon Companion Cropping Can Induce Watermelon Disease Resistance Against <i>Fusarium oxysporum</i> f. sp. <i>niveum</i> . Plant Disease, 2019, 103, 1693-1702.	1.4	26
30	Rotations with Indian Mustard and Wild Rocket Suppressed Cucumber Fusarium Wilt Disease and Changed Rhizosphere Bacterial Communities. Microorganisms, 2019, 7, 57.	3.6	22
31	Study of the physiological mechanism of delaying cucumber senescence by wheat intercropping pattern. Journal of Plant Physiology, 2019, 234-235, 154-166.	3 . 5	8
32	Wheat straw increases the defense response and resistance of watermelon monoculture to Fusarium wilt. BMC Plant Biology, 2019, 19, 551.	3.6	15
33	The role of root exudates, CMNs, and VOCs in plant–plant interaction. Journal of Plant Interactions, 2019, 14, 630-636.	2.1	34
34	Transcriptomic comparison of <i>Allium cepa</i> var <i> agrogatum</i> Don. cultivars with different facilitating potentials on tomato seedlings. Journal of Plant Interactions, 2019, 14, 54-60.	2.1	1
35	p-Coumaric can alter the composition of cucumber rhizosphere microbial communities and induce negative plant-microbial interactions. Biology and Fertility of Soils, 2018, 54, 363-372.	4.3	83
36	Effects of vanillin on the community structures and abundances of <i>Fusarium</i> and <i>Trichoderma</i> spp. in cucumber seedling rhizosphere. Journal of Plant Interactions, 2018, 13, 45-50.	2.1	20

#	Article	lF	CITATIONS
37	Vanillic acid changed cucumber (Cucumis sativus L.) seedling rhizosphere total bacterial, Pseudomonas and Bacillus spp. communities. Scientific Reports, 2018, 8, 4929.	3.3	31
38	Root exudates of potato onion are involved in the suppression of clubroot in a Chinese cabbage-potato onion-Chinese cabbage crop rotation. European Journal of Plant Pathology, 2018, 150, 765-777.	1.7	15
39	Evaluation of soil enzyme activities and microbial communities in tomato continuous cropping soil treated with jerusalem artichoke residues. Communications in Soil Science and Plant Analysis, 2018, 49, 2727-2740.	1.4	9
40	Cucumber (Cucumis sativus L.) Seedling Rhizosphere Trichoderma and Fusarium spp. Communities Altered by Vanillic Acid. Frontiers in Microbiology, 2018, 9, 2195.	3.5	36
41	Changes in rhizosphere microbial communities in potted cucumber seedlings treated with syringic acid. PLoS ONE, 2018, 13, e0200007.	2.5	23
42	Application of Sodium Silicate Enhances Cucumber Resistance to Fusarium Wilt and Alters Soil Microbial Communities. Frontiers in Plant Science, 2018, 9, 624.	3.6	30
43	Diversity and Co-occurrence Patterns of Soil Bacterial and Fungal Communities in Seven Intercropping Systems. Frontiers in Microbiology, 2018, 9, 1521.	3.5	132
44	Continuously Monocropped Jerusalem Artichoke Changed Soil Bacterial Community Composition and Ammonia-Oxidizing and Denitrifying Bacteria Abundances. Frontiers in Microbiology, 2018, 9, 705.	3.5	44
45	Effects of soil improvement technology on soil quality in solar greenhouse. Environmental Science and Pollution Research, 2018, 25, 24093-24100.	5.3	5
46	Conversion from long-term cultivated wheat field to Jerusalem artichoke plantation changed soil fungal communities. Scientific Reports, 2017, 7, 41502.	3.3	10
47	Soil microbial communities in cucumber monoculture and rotation systems and their feedback effects on cucumber seedling growth. Plant and Soil, 2017, 415, 507-520.	3.7	134
48	Wheat cover crop promoted cucumber seedling growth through regulating soil nutrient resources or soil microbial communities?. Plant and Soil, 2017, 418, 459-475.	3.7	14
49	Root interactions and tomato growth in tomato/potato onion companion-cropping system under different phosphorus levels. Journal of Plant Interactions, 2017, 12, 438-446.	2.1	7
50	Effects of Intercropping with Potato Onion on the Growth of Tomato and Rhizosphere Alkaline Phosphatase Genes Diversity. Frontiers in Plant Science, 2016, 7, 846.	3.6	34
51	An endophytic Streptomyces sp. strain DHV3-2 from diseased root as a potential biocontrol agent against Verticillium dahliae and growth elicitor in tomato (Solanum lycopersicum). Antonie Van Leeuwenhoek, 2016, 109, 1573-1582.	1.7	27
52	Physiological response and sulfur metabolism of the V. dahliae-infected tomato plants in tomato/potato onion companion cropping. Scientific Reports, 2016, 6, 36445.	3.3	25
53	Companion cropping with potato onion enhances the disease resistance of tomato against Verticillium dahliae. Frontiers in Plant Science, 2015, 6, 726.	3.6	38
54	The effect of D123 wheat as a companion crop on soil enzyme activities, microbial biomass and microbial communities in the rhizosphere of watermelon. Frontiers in Microbiology, 2015, 6, 899.	3.5	30

#	Article	IF	CITATION
55	Companion cropping with wheat increases resistance to Fusarium wilt in watermelon and the roles of root exudates in watermelon root growth. Physiological and Molecular Plant Pathology, 2015, 90, 12-20.	2.5	24
56	Root exudates of wheat are involved in suppression of Fusarium wilt in watermelon in watermelon-wheat companion cropping. European Journal of Plant Pathology, 2015, 141, 209-216.	1.7	43
57	Protein expression in accessions of Chinese onion with different allelopathic potentials under monocropping and intercropping systems. Acta Physiologiae Plantarum, 2013, 35, 2241-2250.	2.1	4
58	Artificially applied vanillic acid changed soil microbial communities in the rhizosphere of cucumber (<i>Cucumis sativus</i> L.). Canadian Journal of Soil Science, 2013, 93, 13-21.	1.2	36
59	Responses of Soil Microbial Communities in the Rhizosphere of Cucumber (Cucumis sativus L.) to Exogenously Applied p-Hydroxybenzoic Acid. Journal of Chemical Ecology, 2012, 38, 975-983.	1.8	50
60	Effects of intercropping cucumber with onion or garlic on soil enzyme activities, microbial communities and cucumber yield. European Journal of Soil Biology, 2011, 47, 279-287.	3.2	166
61	Improved bacterial community diversity and cucumber yields in a rotation with kidney bean–celery–cucumber. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2011, 61, 122-128.	0.6	5
62	Effects of rotation and interplanting on soil bacterial communities and cucumber yield. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2009, 59, 431-439.	0.6	12