
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7513038/publications.pdf Version: 2024-02-01

Ολμείλ Μλήερ

#	Article	IF	CITATIONS
1	Cannabinol inhibits oxytosis/ferroptosis by directly targeting mitochondria independently of cannabinoid receptors. Free Radical Biology and Medicine, 2022, 180, 33-51.	1.3	14
2	The Alzheimer's disease drug candidate J147 decreases blood plasma fatty acid levels via modulation of AMPK/ACC1 signaling in the liver. Biomedicine and Pharmacotherapy, 2022, 147, 112648.	2.5	8
3	The Role of AMP-activated Protein Kinase in Oxytosis/Ferroptosis: Protector or Potentiator?. Antioxidants and Redox Signaling, 2022, , .	2.5	4
4	Preventing and Treating Neurological Disorders with the Flavonol Fisetin. Brain Plasticity, 2021, 6, 155-166.	1.9	41
5	Natural products targeting mitochondria: emerging therapeutics for age-associated neurological disorders. , 2021, 221, 107749.		29
6	Investigations into the Role of Metabolism in the Inflammatory Response of BV2 Microglial Cells. Antioxidants, 2021, 10, 109.	2.2	3
7	Constitutive and Regulated Shedding of Soluble FGF Receptors Releases Biologically Active Inhibitors of FGF-2. International Journal of Molecular Sciences, 2021, 22, 2712.	1.8	7
8	The search for antiâ€oxytotic/ferroptotic compounds in the plant world. British Journal of Pharmacology, 2021, 178, 3611-3626.	2.7	7
9	Defining a pharmacological inhibitor fingerprint for oxytosis/ferroptosis. Free Radical Biology and Medicine, 2021, 171, 219-231.	1.3	12
10	Profiling the chemical nature of anti-oxytotic/ferroptotic compounds with phenotypic screening. Free Radical Biology and Medicine, 2021, 177, 313-325.	1.3	10
11	Intracellular amyloid toxicity induces oxytosis/ferroptosis regulated cell death. Cell Death and Disease, 2020, 11, 828.	2.7	59
12	Using the Oxytosis/Ferroptosis Pathway to Understand and Treat Age-Associated Neurodegenerative Diseases. Cell Chemical Biology, 2020, 27, 1456-1471.	2.5	56
13	Modulation of the Neuroprotective and Anti-inflammatory Activities of the Flavonol Fisetin by the Transition Metals Iron and Copper. Antioxidants, 2020, 9, 1113.	2.2	21
14	CMS121, a fatty acid synthase inhibitor, protects against excess lipid peroxidation and inflammation and alleviates cognitive loss in a transgenic mouse model of Alzheimer's disease. Redox Biology, 2020, 36, 101648.	3.9	70
15	Targeting of intracellular Ca2+ stores as a therapeutic strategy against age-related neurotoxicities. Npj Aging and Mechanisms of Disease, 2020, 6, 10.	4.5	18
16	Sterubin: Enantioresolution and Configurational Stability, Enantiomeric Purity in Nature, and Neuroprotective Activity in Vitro and in Vivo. Chemistry - A European Journal, 2020, 26, 7299-7308.	1.7	23
17	The Potential of Flavonoids for the Treatment of Neurodegenerative Diseases. International Journal of Molecular Sciences, 2019, 20, 3056.	1.8	142
18	Efficacy of Cannabinoids in a Pre-Clinical Drug-Screening Platform for Alzheimer's Disease. Molecular Neurobiology, 2019, 56, 7719-7730.	1.9	46

#	Article	IF	CITATIONS
19	Hyperosmotic Stress Initiates AMPK-Independent Autophagy and AMPK- and Autophagy-Independent Depletion of Thioredoxin 1 and Glyoxalase 2 in HT22 Nerve Cells. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-10.	1.9	6
20	Old age-associated phenotypic screening for Alzheimer's disease drug candidates identifies sterubin as a potent neuroprotective compound from Yerba santa. Redox Biology, 2019, 21, 101089.	3.9	51
21	Elevating acetyl-CoA levels reduces aspects of brain aging. ELife, 2019, 8, .	2.8	94
22	The mitochondrial <scp>ATP</scp> synthase is a shared drug target for aging and dementia. Aging Cell, 2018, 17, e12715.	3.0	109
23	Potentiation of glutathione loss and nerve cell death by the transition metals iron and copper: Implications for age-related neurodegenerative diseases. Free Radical Biology and Medicine, 2018, 115, 92-104.	1.3	75
24	Fisetin Reduces the Impact of Aging on Behavior and Physiology in the Rapidly Aging SAMP8 Mouse. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2018, 73, 299-307.	1.7	95
25	Geroneuroprotectors: Effective Geroprotectors for the Brain. Trends in Pharmacological Sciences, 2018, 39, 1004-1007.	4.0	32
26	Oxytosis/Ferroptosis—(Re-) Emerging Roles for Oxidative Stress-Dependent Non-apoptotic Cell Death in Diseases of the Central Nervous System. Frontiers in Neuroscience, 2018, 12, 214.	1.4	197
27	Methylglyoxal-Induced Protection Response and Toxicity: Role of Glutathione Reductase and Thioredoxin Systems. Neurotoxicity Research, 2017, 32, 340-350.	1.3	13
28	Methylglyoxal-induced AMPK activation leads to autophagic degradation of thioredoxin 1 and glyoxalase 2 in HT22 nerve cells. Free Radical Biology and Medicine, 2017, 108, 270-279.	1.3	31
29	Intraneuronal protein aggregation as a trigger for inflammation and neurodegeneration in the aging brain. FASEB Journal, 2017, 31, 5-10.	0.2	92
30	Protective effects of fisetin and other berry flavonoids in Parkinson's disease. Food and Function, 2017, 8, 3033-3042.	2.1	60
31	How fisetin reduces the impact of age and disease on CNS function. Frontiers in Bioscience - Scholar, 2015, 7, 58-82.	0.8	85
32	Chronic Glutamate Toxicity in Neurodegenerative Diseases—What is the Evidence?. Frontiers in Neuroscience, 2015, 9, 469.	1.4	528
33	Cell and brain tissue imaging of the flavonoid fisetin using label-free two-photon microscopy. Neurochemistry International, 2015, 89, 243-248.	1.9	48
34	A comprehensive multiomics approach toward understanding the relationship between aging and dementia. Aging, 2015, 7, 937-955.	1.4	65
35	Modulation of p25 and inflammatory pathways by fisetin maintains cognitive function in <scp>A</scp> lzheimer's disease transgenic mice. Aging Cell, 2014, 13, 379-390.	3.0	162
36	The Cystine/Glutamate Antiporter System x _c ^{â^'} in Health and Disease: From Molecular Mechanisms to Novel Therapeutic Opportunities. Antioxidants and Redox Signaling, 2013, 18, 522-555.	2.5	689

#	Article	IF	CITATIONS
37	Concurrent regulation of the transcription factors Nrf2 and ATF4 mediates the enhancement of glutathione levels by the flavonoid fisetin. Biochemical Pharmacology, 2013, 85, 1816-1826.	2.0	69
38	Functional Consequences of Age-Dependent Changes in Glutathione Status in the Brain. Antioxidants and Redox Signaling, 2013, 19, 813-822.	2.5	89
39	The Flavonoid Fisetin Attenuates Postischemic Immune Cell Infiltration, Activation and Infarct Size after Transient Cerebral Middle Artery Occlusion in Mice. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 835-843.	2.4	98
40	Chemical Modification of the Multitarget Neuroprotective Compound Fisetin. Journal of Medicinal Chemistry, 2012, 55, 378-389.	2.9	84
41	Control of Redox State and Redox Signaling by Neural Antioxidant Systems. Antioxidants and Redox Signaling, 2011, 14, 1449-1465.	2.5	52
42	A Novel Neurotrophic Drug for Cognitive Enhancement and Alzheimer's Disease. PLoS ONE, 2011, 6, e27865.	1.1	101
43	ERK activation by the polyphenols fisetin and resveratrol provides neuroprotection in multiple models of Huntington's disease. Human Molecular Genetics, 2011, 20, 261-270.	1.4	198
44	Induction of Nrf2 and xCT are involved in the action of the neuroprotective antibiotic ceftriaxone <i>in vitro</i> . Journal of Neurochemistry, 2009, 111, 332-343.	2.1	167
45	A broadly neuroprotective derivative of curcumin. Journal of Neurochemistry, 2008, 105, 1336-1345.	2.1	113
46	A novel approach to enhancing cellular glutathione levels. Journal of Neurochemistry, 2008, 107, 690-700.	2.1	40
47	A novel approach to screening for new neuroprotective compounds for the treatment of stroke. Brain Research, 2007, 1173, 117-125.	1.1	121
48	A comparison of the neurotrophic activities of the flavonoid fisetin and some of its derivatives. Free Radical Research, 2006, 40, 1105-1111.	1.5	77
49	Flavonoid fisetin promotes ERK-dependent long-term potentiation and enhances memory. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16568-16573.	3.3	271
50	The Molecular Basis of Oxidative Stress-Induced Cell Death in an Immortalized Retinal Ganglion Cell Line. , 2005, 46, 749.		99
51	The effects of stress and aging on glutathione metabolism. Ageing Research Reviews, 2005, 4, 288-314.	5.0	357
52	Induction of PC12 cell differentiation by flavonoids is dependent upon extracellular signal-regulated kinase activation. Journal of Neurochemistry, 2004, 90, 1144-1155.	2.1	125
53	Phorbol esters inhibit fibroblast growth factor-2-stimulated fibroblast proliferation by a p38 MAP kinase dependent pathway. Oncogene, 2002, 21, 1978-1988.	2.6	14
54	Regulation of Antioxidant Metabolism by Translation Initiation Factor 2α. Journal of Cell Biology, 2001, 152, 997-1006.	2.3	62

#	Article	IF	CITATIONS
55	p38 Mitogen-activated Protein Kinase Activation Is Required for Fibroblast Growth Factor-2-stimulated Cell Proliferation but Not Differentiation. Journal of Biological Chemistry, 1999, 274, 17491-17498.	1.6	131
56	The Regulation of Reactive Oxygen Species Production during Programmed Cell Death. Journal of Cell Biology, 1998, 141, 1423-1432.	2.3	667
57	Requirement for cGMP in Nerve Cell Death Caused by Glutathione Depletion. Journal of Cell Biology, 1997, 139, 1317-1324.	2.3	132
58	A Role for 12-lipoxygenase in Nerve Cell Death Caused by Glutathione Depletion. Neuron, 1997, 19, 453-463.	3.8	460
59	Protein kinase C activation inhibits glutamate-induced cytotoxicity in a neuronal cell line. Brain Research, 1994, 652, 169-173.	1.1	326