## Rory R Duncan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7512971/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A Role for the Autophagic Receptor, SQSTM1/p62, in Trafficking NF-κB/RelA to Nucleolar Aggresomes.<br>Molecular Cancer Research, 2021, 19, 274-287.                                     | 3.4  | 9         |
| 2  | Seeing beyond the limit: A guide to choosing the right super-resolution microscopy technique.<br>Journal of Biological Chemistry, 2021, 297, 100791.                                    | 3.4  | 68        |
| 3  | High fidelity fibre-based physiological sensing deep in tissue. Scientific Reports, 2019, 9, 7713.                                                                                      | 3.3  | 10        |
| 4  | A VPS33A-binding motif on syntaxin 17 controls autophagy completion in mammalian cells. Journal of<br>Biological Chemistry, 2019, 294, 4188-4201.                                       | 3.4  | 26        |
| 5  | SWAP70 undergoes dynamic conformational regulation at the leading edge of migrating cells. FEBS Letters, 2019, 593, 395-405.                                                            | 2.8  | 6         |
| 6  | A \$256imes256\$ , 100-kfps, 61% Fill-Factor SPAD Image Sensor for Time-Resolved Microscopy Applications. IEEE Transactions on Electron Devices, 2018, 65, 547-554.                     | 3.0  | 63        |
| 7  | Glyoxal as an alternative fixative to formaldehyde in immunostaining and superâ€resolution microscopy. EMBO Journal, 2018, 37, 139-159.                                                 | 7.8  | 206       |
| 8  | EnLightenment: High resolution smartphone microscopy as an educational and public engagement platform. Wellcome Open Research, 2018, 2, 107.                                            | 1.8  | 10        |
| 9  | A Catchâ€endâ€Release Approach to Selective Modification of Accessible Tyrosine Residues. ChemBioChem, 2018, 19, 2443-2447.                                                             | 2.6  | 12        |
| 10 | Cylindrical microlensing for enhanced collection efficiency of small pixel SPAD arrays in single-molecule localisation microscopy. Optics Express, 2018, 26, 2280.                      | 3.4  | 37        |
| 11 | Tryptophan and Non-Tryptophan Fluorescence of the Eye Lens Proteins Provides Diagnostics of<br>Cataract at the Molecular Level. Scientific Reports, 2017, 7, 40375.                     | 3.3  | 32        |
| 12 | Navigation through the Plasma Membrane Molecular Landscape Shapes Random Organelle Movement.<br>Current Biology, 2017, 27, 408-414.                                                     | 3.9  | 5         |
| 13 | SAF-A Regulates Interphase Chromosome Structure through Oligomerization with Chromatin-Associated RNAs. Cell, 2017, 169, 1214-1227.e18.                                                 | 28.9 | 166       |
| 14 | Bimodal dynamics of granular organelles in primary renin-expressing cells revealed using TIRF<br>microscopy. American Journal of Physiology - Renal Physiology, 2017, 312, F200-F209.   | 2.7  | 2         |
| 15 | Automated single particle detection and tracking for large microscopy datasets. Royal Society Open Science, 2016, 3, 160225.                                                            | 2.4  | 19        |
| 16 | Smart-aggregation imaging for single molecule localisation with SPAD cameras. Scientific Reports, 2016, 6, 37349.                                                                       | 3.3  | 23        |
| 17 | Translation Microscopy (TRAM) for super-resolution imaging. Scientific Reports, 2016, 6, 19993.                                                                                         | 3.3  | 5         |
| 18 | Rapid Formation of a Supramolecular Polypeptide–DNA Hydrogel for Inâ€Situ Threeâ€Dimensional<br>Multilayer Bioprinting. Angewandte Chemie - International Edition, 2015, 54, 3957-3961. | 13.8 | 344       |

RORY R DUNCAN

| #  | Article                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | A molecular toggle after exocytosis sequesters the presynaptic syntaxin1a molecules involved in prior vesicle fusion. Nature Communications, 2014, 5, 5774.      | 12.8 | 30        |
| 20 | Imaging Large Cohorts of Single Ion Channels and Their Activity. Frontiers in Endocrinology, 2013, 4, 114.                                                       | 3.5  | 9         |
| 21 | Munc18-1 Protein Molecules Move between Membrane Molecular Depots Distinct from Vesicle Docking<br>Sites. Journal of Biological Chemistry, 2013, 288, 5102-5113. | 3.4  | 19        |
| 22 | Secretory Vesicles Are Preferentially Targeted to Areas of Low Molecular SNARE Density. PLoS ONE, 2012, 7, e49514.                                               | 2.5  | 30        |
| 23 | Munc18-1 and Syntaxin1: Unraveling the Interactions Between the Dynamic Duo. Cellular and Molecular Neurobiology, 2010, 30, 1309-1313.                           | 3.3  | 11        |
| 24 | The t-SNARE Complex: A Close Up. Cellular and Molecular Neurobiology, 2010, 30, 1321-1326.                                                                       | 3.3  | 12        |
| 25 | Vesicle Fusion Probability Is Determined by the Specific Interactions of Munc18. Journal of Biological Chemistry, 2010, 285, 38141-38148.                        | 3.4  | 10        |
| 26 | Munc18/Syntaxin Interaction Kinetics Control Secretory Vesicle Dynamics. Journal of Biological Chemistry, 2010, 285, 3965-3972.                                  | 3.4  | 50        |
| 27 | t-SNARE Protein Conformations Patterned by the Lipid Microenvironment. Journal of Biological<br>Chemistry, 2010, 285, 13535-13541.                               | 3.4  | 60        |
| 28 | In vivo FLIM-FRET measurements of recombinant proteins expressed in filamentous fungi. Fungal<br>Biology Reviews, 2009, 23, 67-71.                               | 4.7  | 5         |
| 29 | S-nitrosylation of syntaxin 1 at Cys145 is a regulatory switch controlling Munc18-1 binding.<br>Biochemical Journal, 2008, 413, 479-491.                         | 3.7  | 55        |
| 30 | Specific Targeting of Pro-Death NMDA Receptor Signals with Differing Reliance on the NR2B PDZ<br>Ligand. Journal of Neuroscience, 2008, 28, 10696-10710.         | 3.6  | 146       |
| 31 | Spatially Segregated SNARE Protein Interactions in Living Fungal Cells. Journal of Biological Chemistry, 2007, 282, 22775-22785.                                 | 3.4  | 60        |
| 32 | Munc18-1 prevents the formation of ectopic SNARE complexes in living cells. Journal of Cell Science, 2007, 120, 4407-4415.                                       | 2.0  | 77        |
| 33 | Functionally and Spatially Distinct Modes of munc18-Syntaxin 1 Interaction. Journal of Biological Chemistry, 2007, 282, 12097-12103.                             | 3.4  | 115       |
| 34 | Time-correlated single photon counting FLIM: Some considerations for physiologists. Microscopy Research and Technique, 2007, 70, 420-425.                        | 2.2  | 12        |
| 35 | Fluorescence lifetime imaging microscopy (FLIM) to quantify protein–protein interactions inside cells.<br>Biochemical Society Transactions, 2006, 34, 679-682.   | 3.4  | 29        |
| 36 | The Lifecycle of Secretory Vesicles: Implications for Dendritic Transmitter Release. , 2005, , 35-53.                                                            |      | 0         |

Rory R Duncan

| #  | Article                                                                                                                                                                                                      | lF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | An endochitinase A from Vibrio carchariae: cloning, expression, mass and sequence analyses, and chitin hydrolysis. Archives of Biochemistry and Biophysics, 2004, 424, 171-180.                              | 3.0  | 58        |
| 38 | Functional and spatial segregation of secretory vesicle pools according to vesicle age. Nature, 2003, 422, 176-180.                                                                                          | 27.8 | 198       |
| 39 | Red, yellow, green go! – a novel tool for microscopic segregation of secretory vesicle pools according to their age. Biochemical Society Transactions, 2003, 31, 851-856.                                    | 3.4  | 16        |
| 40 | Exocytosis Studies in a Chromaffin Cellâ€Free System. Annals of the New York Academy of Sciences, 2002, 971, 257-261.                                                                                        | 3.8  | 8         |
| 41 | Efficacy of Semliki Forest Virus Transduction of Bovine Adrenal Chromaffin Cells. Annals of the New<br>York Academy of Sciences, 2002, 971, 641-646.                                                         | 3.8  | 3         |
| 42 | Alternative Splicing Switches Potassium Channel Sensitivity to Protein Phosphorylation. Journal of Biological Chemistry, 2001, 276, 7717-7720.                                                               | 3.4  | 189       |
| 43 | Is double C2 protein (DOC2) expressed in bovine adrenal medulla? A commercial anti-DOC2 monoclonal antibody recognizes a major bovine mitochondrial antigen. Biochemical Journal, 2000, 351, 33.             | 3.7  | 2         |
| 44 | ls double C2 protein (DOC2) expressed in bovine adrenal medulla? A commercial anti-DOC2 monoclonal antibody recognizes a major bovine mitochondrial antigen. Biochemical Journal, 2000, 351, 33-37.          | 3.7  | 4         |
| 45 | Double C2 protein. A review1present address: Department of Physiology and Biophysics, Keck School of<br>Medicine, 1333 San Pablo St., MMR626, Los Angeles, CA 90089-9142, USA. Biochimie, 2000, 82, 421-426. | 2.6  | 47        |
| 46 | Molecular Components of Large Conductance Calcium-Activated Potassium (BK) Channels in Mouse<br>Pituitary Corticotropes. Molecular Endocrinology, 1999, 13, 1728-1737.                                       | 3.7  | 66        |
| 47 | Transient, Phorbol Ester-induced DOC2-Munc13 Interactions in Vivo. Journal of Biological Chemistry, 1999, 274, 27347-27350.                                                                                  | 3.4  | 55        |
| 48 | High-efficiency Semliki Forest virus-mediated transduction in bovine adrenal chromaffin cells.<br>Biochemical Journal, 1999, 342, 497-501.                                                                   | 3.7  | 24        |
| 49 | High-efficiency Semliki Forest virus-mediated transduction in bovine adrenal chromaffin cells.<br>Biochemical Journal, 1999, 342, 497.                                                                       | 3.7  | 5         |
| 50 | Rat Brain p64H1, Expression of a New Member of the p64 Chloride Channel Protein Family in Endoplasmic Reticulum. Journal of Biological Chemistry, 1997, 272, 23880-23886.                                    | 3.4  | 103       |
| 51 | Identification and characterisation of a homologue of p64 in rat tissues. FEBS Letters, 1996, 390, 207-210.                                                                                                  | 2.8  | 22        |
| 52 | EnLightenment: High resolution smartphone microscopy as an educational and public engagement platform. Wellcome Open Research, 0, 2, 107.                                                                    | 1.8  | 6         |