Odette Scharenborg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7512958/publications.pdf

Version: 2024-02-01

516710 552781 45 872 16 26 citations g-index h-index papers 47 47 47 599 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Discovering phonetic inventories with crosslingual automatic speech recognition. Computer Speech and Language, 2022, 74, 101358.	4.3	6
2	The Presence of Background Noise Extends the Competitor Space in Native and Nonâ€Native Spokenâ€Word Recognition: Insights from Computational Modeling. Cognitive Science, 2022, 46, e13110.	1.7	4
3	The differential roles of lexical and sublexical processing during spoken-word recognition in clear and in noise. Cortex, 2022, 151, 70-88.	2.4	7
4	The time course of adaptation to distorted speech. Journal of the Acoustical Society of America, 2022, 151, 2636-2646.	1.1	6
5	The effect of intermittent noise on lexically-guided perceptual learning in native and non-native listening. Speech Communication, 2021, 126, 61-70.	2.8	0
6	Learning to Recognise Words Using Visually Grounded Speech. , 2021, , .		5
7	Show and Speak: Directly Synthesize Spoken Description of Images. , 2021, , .		2
8	How Phonotactics Affect Multilingual and Zero-Shot ASR Performance. , 2021, , .		5
9	The Effectiveness of Unsupervised Subword Modeling With Autoregressive and Cross-Lingual Phone-Aware Networks. IEEE Open Journal of Signal Processing, 2021, 2, 230-247.	3 . 5	1
10	Generating Images From Spoken Descriptions. IEEE/ACM Transactions on Audio Speech and Language Processing, 2021, 29, 850-865.	5 . 8	13
11	Synthesizing Spoken Descriptions of Images. IEEE/ACM Transactions on Audio Speech and Language Processing, 2021, 29, 3242-3254.	5. 8	2
12	The effectiveness of self-supervised representation learning in zero-resource subword modeling., 2021,,.		0
13	Cross-linguistic Influences on Sentence Accent Detection in Background Noise. Language and Speech, 2020, 63, 3-30.	1.1	2
14	Speech Technology for Unwritten Languages. IEEE/ACM Transactions on Audio Speech and Language Processing, 2020, 28, 964-975.	5 . 8	13
15	Why listening in background noise is harder in a non-native language than in a native language: A review. Speech Communication, 2019, 108, 53-64.	2.8	41
16	The Representation of Speech in Deep Neural Networks. Lecture Notes in Computer Science, 2019, , 194-205.	1.3	3
17	Bayesian Models for Unit Discovery on a Very Low Resource Language. , 2018, , .		7
18	The effect of background noise on the word activation process in nonnative spoken-word recognition Journal of Experimental Psychology: Learning Memory and Cognition, 2018, 44, 233-249.	0.9	25

#	Article	IF	Citations
19	L2 voice recognition: The role of speaker-, listener-, and stimulus-related factors. Journal of the Acoustical Society of America, 2017, 142, 3058-3068.	1.1	4
20	Perception of Emotion in Conversational Speech by Younger and Older Listeners. Frontiers in Psychology, 2016, 7, 781.	2.1	20
21	Lexically-guided perceptual learning in non-native listening. Bilingualism, 2016, 19, 914-920.	1.3	21
22	Age and hearing loss and the use of acoustic cues in fricative categorization. Journal of the Acoustical Society of America, 2015, 138, 1408-1417.	1.1	4
23	The role of attentional abilities in lexically guided perceptual learning by older listeners. Attention, Perception, and Psychophysics, 2015, 77, 493-507.	1.3	28
24	Phoneme categorization and discrimination in younger and older adults: A comparative analysis of perceptual, lexical, and attentional factors Psychology and Aging, 2014, 29, 150-162.	1.6	31
25	Comparing lexically guided perceptual learning in younger and older listeners. Attention, Perception, and Psychophysics, 2013, 75, 525-536.	1.3	33
26	Phonological abstraction without phonemes in speech perception. Cognition, 2013, 129, 356-361.	2.2	56
27	Models of spokenâ€word recognition. Wiley Interdisciplinary Reviews: Cognitive Science, 2012, 3, 387-401.	2.8	68
28	Acoustic reduction in conversational Dutch: A quantitative analysis based on automatically generated segmental transcriptions. Journal of Phonetics, 2011, 39, 96-109.	1.2	51
29	Computational modelling of spoken-word recognition processes. Pragmatics and Cognition, 2010, 18, 136-164.	0.4	16
30	Language-independent processing in speech perception: Identification of English intervocalic consonants by speakers of eight European languages. Speech Communication, 2010, 52, 954-967.	2.8	31
31	Native and non-native listeners' perception of English consonants in different types of noise. Speech Communication, 2010, 52, 980-995.	2.8	35
32	Modeling the use of durational information in human spoken-word recognition. Journal of the Acoustical Society of America, 2010, 127, 3758-3770.	1.1	25
33	Unsupervised speech segmentation: An analysis of the hypothesized phone boundaries. Journal of the Acoustical Society of America, 2010, 127, 1084-1095.	1.1	91
34	Reaching over the gap: A review of efforts to link human and automatic speech recognition research. Speech Communication, 2007, 49, 336-347.	2.8	94
35	†Early recognition' of polysyllabic words in continuous speech. Computer Speech and Language, 2007, 21, 54-71.	4.3	4
36	A two-pass approach for handling out-of-vocabulary words in a large vocabulary recognition task. Computer Speech and Language, 2007, 21, 206-218.	4.3	1

#	Article	IF	Citations
37	Towards capturing fine phonetic variation in speech using articulatory features. Speech Communication, 2007, 49, 811-826.	2.8	20
38	How Should a Speech Recognizer Work?. Cognitive Science, 2005, 29, 867-918.	1.7	52
39	Bridging automatic speech recognition and psycholinguistics: Extending Shortlist to an end-to-end model of human speech recognition (L). Journal of the Acoustical Society of America, 2003, 114, 3032-3035.	1.1	14
40	Unsupervised Acoustic Unit Discovery by Leveraging a Language-Independent Subword Discriminative Feature Representation. , 0 , , .		5
41	The Neural Correlates Underlying Lexically-Guided Perceptual Learning. , 0, , .		2
42	That Sounds Familiar: An Analysis of Phonetic Representations Transfer Across Languages. , 0, , .		9
43	Unsupervised Subword Modeling Using Autoregressive Pretraining and Cross-Lingual Phone-Aware Modeling. , 0, , .		3
44	S2IGAN: Speech-to-Image Generation via Adversarial Learning. , 0, , .		8
45	Evaluating Automatically Generated Phoneme Captions for Images. , 0, , .		3