
Michael L-H Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7512909/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mitochondrial iron trafficking and the integration of iron metabolism between the mitochondrion and cytosol. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10775-10782.	3.3	413
2	Cellular iron uptake, trafficking and metabolism: Key molecules and mechanisms and their roles in disease. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 1130-1144.	1.9	275
3	Elucidation of the mechanism of mitochondrial iron loading in Friedreich's ataxia by analysis of a mouse mutant. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16381-16386.	3.3	197
4	Roads to melanoma: Key pathways and emerging players in melanoma progression and oncogenic signaling. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 770-784.	1.9	148
5	Hepcidin, the hormone of iron metabolism, is bound specifically to α-2-macroglobulin in blood. Blood, 2009, 113, 6225-6236.	0.6	111
6	Redox cycling metals: Pedaling their roles in metabolism and their use in the development of novel therapeutics. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 727-748.	1.9	111
7	Copper and conquer: copper complexes of di-2-pyridylketone thiosemicarbazones as novel anti-cancer therapeutics. Metallomics, 2016, 8, 874-886.	1.0	105
8	The Role of the Antioxidant Response in Mitochondrial Dysfunction in Degenerative Diseases: Cross-Talk between Antioxidant Defense, Autophagy, and Apoptosis. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-26.	1.9	92
9	Identification of nonferritin mitochondrial iron deposits in a mouse model of Friedreich ataxia. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20590-20595.	3.3	85
10	Mitochondrial Mayhem: The Mitochondrion as a Modulator of Iron Metabolism and Its Role in Disease. Antioxidants and Redox Signaling, 2011, 15, 3003-3019.	2.5	84
11	The role of NDRG1 in the pathology and potential treatment of human cancers. Journal of Clinical Pathology, 2013, 66, 911-917.	1.0	72
12	The proto-oncogene c-Src and its downstream signaling pathways are inhibited by the metastasis suppressor, NDRG1. Oncotarget, 2015, 6, 8851-8874.	0.8	64
13	Molecular and Functional Alterations in a Mouse Cardiac Model of Friedreich Ataxia. American Journal of Pathology, 2013, 183, 745-757.	1.9	62
14	The ins and outs of mitochondrial iron-loading: the metabolic defect in Friedreich's ataxia. Journal of Molecular Medicine, 2010, 88, 323-329.	1.7	55
15	Pharmacological targeting of mitochondria in cancer stem cells: An ancient organelle at the crossroad of novel anti-cancer therapies. Pharmacological Research, 2019, 139, 298-313.	3.1	55
16	Molecular Alterations in a Mouse Cardiac Model of Friedreich Ataxia. American Journal of Pathology, 2017, 187, 2858-2875.	1.9	51
17	Fixing frataxin: â€~ironing out' the metabolic defect in <scp>F</scp> riedreich's ataxia. British Journal of Pharmacology, 2014, 171, 2174-2190.	2.7	46
18	Targeting the Metastasis Suppressor, N-Myc Downstream Regulated Gene-1, with Novel Di-2-Pyridylketone Thiosemicarbazones: Suppression of Tumor Cell Migration and Cell-Collagen Adhesion by Inhibiting Focal Adhesion Kinase/Paxillin Signaling. Molecular Pharmacology, 2016, 89, 521-540.	1.0	45

MICHAEL L-H HUANG

#	Article	IF	CITATIONS
19	Frataxin and the molecular mechanism of mitochondrial iron-loading in Friedreich's ataxia. Clinical Science, 2016, 130, 853-870.	1.8	45
20	The metastasis suppressor, NDRG1, attenuates oncogenic TGF-β and NF-κB signaling to enhance membrane E-cadherin expression in pancreatic cancer cells. Carcinogenesis, 2019, 40, 805-818.	1.3	45
21	The molecular effect of metastasis suppressors on Src signaling and tumorigenesis: new therapeutic targets. Oncotarget, 2015, 6, 35522-35541.	0.8	43
22	Mitochondrial dysfunction in the neuro-degenerative and cardio-degenerative disease, Friedreich's ataxia. Neurochemistry International, 2018, 117, 35-48.	1.9	38
23	Tumor stressors induce two mechanisms of intracellular P-glycoprotein–mediated resistance that are overcome by lysosomal-targeted thiosemicarbazones. Journal of Biological Chemistry, 2018, 293, 3562-3587.	1.6	36
24	Potent Antimycobacterial Activity of the Pyridoxal Isonicotinoyl Hydrazone Analog 2-Pyridylcarboxaldehyde Isonicotinoyl Hydrazone: A Lipophilic Transport Vehicle for Isonicotinic Acid Hydrazide. Molecular Pharmacology, 2014, 85, 269-278.	1.0	33
25	Potentiating the cellular targeting and anti-tumor activity of Dp44mT <i>via</i> binding to human serum albumin: two saturable mechanisms of Dp44mT uptake by cells. Oncotarget, 2015, 6, 10374-10398.	0.8	28
26	Hepcidin Bound to α2-Macroglobulin Reduces Ferroportin-1 Expression and Enhances Its Activity at Reducing Serum Iron Levels. Journal of Biological Chemistry, 2013, 288, 25450-25465.	1.6	22
27	Novel Thiosemicarbazones Inhibit Lysine-Rich Carcinoembryonic Antigen–Related Cell Adhesion Molecule 1 (CEACAM1) Coisolated (LYRIC) and the LYRIC-Induced Epithelial-Mesenchymal Transition via Upregulation of N-Myc Downstream-Regulated Gene 1 (NDRG1). Molecular Pharmacology, 2017, 91, 499-517.	1.0	22
28	Biochemistry of cardiomyopathy in the mitochondrial disease Friedreich's ataxia. Biochemical Journal, 2013, 453, 321-336.	1.7	19
29	Exploiting Cancer Metal Metabolism using Anti-Cancer Metal- Binding Agents. Current Medicinal Chemistry, 2019, 26, 302-322.	1.2	19
30	Making a case for albumin – a highly promising drug-delivery system. Future Medicinal Chemistry, 2015, 7, 553-556.	1.1	17
31	Antioxidant defense mechanisms and its dysfunctional regulation in the mitochondrial disease, Friedreich's ataxia. Free Radical Biology and Medicine, 2020, 159, 177-188.	1.3	16
32	Treatment of dilated cardiomyopathy in a mouse model of Friedreich's ataxia using N-acetylcysteine and identification of alterations in microRNA expression that could be involved in its pathogenesis. Pharmacological Research, 2020, 159, 104994.	3.1	13
33	Mechanisms of impaired mitochondrial homeostasis and NAD+ metabolism in a model of mitochondrial heart disease exhibiting redox active iron accumulation. Redox Biology, 2021, 46, 102038.	3.9	12
34	Acireductone dioxygenase 1 (ADI1) is regulated by cellular iron by a mechanism involving the iron chaperone, PCBP1, with PCBP2 acting as a potential co-chaperone. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165844.	1.8	8
35	Vesicular ATP-binding cassette transporters in human disease: relevant aspects of their organization for future drug development. Future Drug Discovery, 2020, 2, .	0.8	8
36	Novel multifunctional iron chelators of the aroyl nicotinoyl hydrazone class that markedly enhance cellular NAD + /NADH ratios. British Journal of Pharmacology, 2020, 177, 1967-1987.	2.7	7

MICHAEL L-H HUANG

#	Article	IF	CITATIONS
37	Hepcidin, show some self-control! How the hormone of iron metabolism regulates its own expression. Biochemical Journal, 2013, 452, e3-e5.	1.7	6
38	During mitosis ZEB1 "switches―from being a chromatin-bound epithelial gene repressor, to become a microtubule-associated protein. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118673.	1.9	6
39	The potential of the novel NAD+ supplementing agent, SNH6, as a therapeutic strategy for the treatment of Friedreich's ataxia. Pharmacological Research, 2020, 155, 104680.	3.1	6
40	Letter to the Editor: "Analysis of the Interaction of Dp44mT with Human Serum Albumin and Calf Thymus DNA Using Molecular Docking and Spectroscopic Techniques― International Journal of Molecular Sciences, 2016, 17, 1916.	1.8	3
41	Incidence of Invasive Fungal Infections (IFI) in Pediatric Acute Lymphoblastic Leukemia (ALL) and the Impact of Antifungal Prophylaxis in an Endemic Area. Blood, 2021, 138, 1215-1215.	0.6	1
42	Targeting autophagy in antitumor agent design: furthering the †lysosomal love' strategy. Future Medicinal Chemistry, 2016, 8, 727-729.	1.1	0
43	Paradoxical disruption of Nrf2 signaling despite mitochondrial iron driven oxidative stress in Friedreich's ataxia cardiomyopathy. Free Radical Biology and Medicine, 2018, 128, S131.	1.3	0
44	The dys-regulation of anti-oxidant defense via an impairment of Nrf2 response in the pathology of Friedreich's ataxia. Free Radical Biology and Medicine, 2018, 120, S35.	1.3	0
45	Deciphering Mitochondrial Iron Metabolism Using a Knockout Mouse Blood, 2009, 114, 1995-1995.	0.6	0