Douglas M Templeton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7512853/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for terms related to chemical speciation and fractionation of elements. Definitions, structural aspects, and methodological approaches (IUPAC Recommendations 2000). Pure and Applied Chemistry, 2000, 72, 1453-1470.	1.9	810
2	Long-Term Safety and Effectiveness of Iron-Chelation Therapy with Deferiprone for Thalassemia Major. New England Journal of Medicine, 1998, 339, 417-423.	27.0	389
3	Iron-Chelation Therapy with Oral Deferiprone in Patients with Thalassemia Major. New England Journal of Medicine, 1995, 332, 918-922.	27.0	306
4	Multiple roles of cadmium in cell death and survival. Chemico-Biological Interactions, 2010, 188, 267-275.	4.0	235
5	Interplay of calcium and cadmium in mediating cadmium toxicity. Chemico-Biological Interactions, 2014, 211, 54-65.	4.0	198
6	Comparison of oral iron chelator L1 and desferrioxamine in iron-loaded patients. Lancet, The, 1990, 336, 1275-1279.	13.7	163
7	Glossary of terms used in toxicology, 2nd edition (IUPAC Recommendations 2007). Pure and Applied Chemistry, 2007, 79, 1153-1344.	1.9	156
8	[3] Toxicological significance of metallothionein. Methods in Enzymology, 1991, 205, 11-24.	1.0	130
9	Growth Failure and Bony Changes Induced by Deferoxamine. Journal of Pediatric Hematology/Oncology, 1992, 14, 48-56.	0.6	121
10	Absorption and Retention of Nickel from Drinking Water in Relation to Food Intake and Nickel Sensitivity. Toxicology and Applied Pharmacology, 1999, 154, 67-75.	2.8	119
11	Induction of c-fos Proto-oncogene in Mesangial Cells by Cadmium. Journal of Biological Chemistry, 1998, 273, 73-79.	3.4	96
12	Genetic regulation of cell function in response to iron overload or chelation. Biochimica Et Biophysica Acta - General Subjects, 2003, 1619, 113-124.	2.4	96
13	Protective elevations of glutathione and metallothionein in cadmium-exposed mesangial cells. Toxicology, 1993, 77, 145-156.	4.2	86
14	Activation of Parallel Mitogen-Activated Protein Kinase Cascades and Induction of c-fos by Cadmium. Toxicology and Applied Pharmacology, 2000, 162, 93-99.	2.8	82
15	Cadmium activates CaMK-II and initiates CaMK-II-dependent apoptosis in mesangial cells. FEBS Letters, 2007, 581, 1481-1486.	2.8	79
16	The Basis and Applicability of the Dimethylmethylene Blue Binding Assay for Sulfated Glycosaminoglycans. Connective Tissue Research, 1988, 17, 23-32.	2.3	77
17	Glypicans: a growing trend. Nature Genetics, 1996, 12, 225-227.	21.4	74
18	Mitochondrial involvement in genetically determined transition metal toxicity. Chemico-Biological Interactions, 2006, 163, 77-85.	4.0	73

#	Article	IF	CITATIONS
19	Metallothionein synthesis and localization in relation to metal storage in rat liver during gestation. Canadian Journal of Biochemistry and Cell Biology, 1985, 63, 16-22.	1.3	72
20	Proteoglycans in Cell Regulation. Critical Reviews in Clinical Laboratory Sciences, 1992, 29, 141-184.	6.1	72
21	Tentative reference values for nickel concentrations in human serum, plasma, blood, and urine: evaluation according to the TRACY protocol. Science of the Total Environment, 1994, 148, 243-251.	8.0	68
22	Combined Liver and Heart Transplantation for End-Stage Iron-Induced Organ Failure in an Adult with Homozygous Beta-Thalassemia. New England Journal of Medicine, 1994, 330, 1125-1127.	27.0	64
23	Modulation by iron loading and chelation of the uptake of non-transferrin-bound iron by human liver cells. Biochimica Et Biophysica Acta - General Subjects, 1995, 1243, 373-380.	2.4	54
24	Subunit structure of bovine ESF (extracellular-matrix stabilizing factor(s)). FEBS Letters, 1993, 318, 292-296.	2.8	52
25	Heparin Inhibits Mitogen-activated Protein Kinase-dependent and -independent c- Induction in Mesangial Cells. Journal of Biological Chemistry, 1996, 271, 17100-17106.	3.4	51
26	Initiation of caspaseâ€independent death in mouse mesangial cells by Cd ²⁺ : Involvement of p38 kinase and CaMKâ€II. Journal of Cellular Physiology, 2008, 217, 307-318.	4.1	51
27	Calcium-independent effects of cadmium on actin assembly in mesangial and vascular smooth muscle cells. , 1996, 33, 208-222.		49
28	Copper Complexation by 3-Hydroxypyridin-4-one Iron Chelators: Structural and Iron Competition Studies. Journal of Medicinal Chemistry, 1994, 37, 461-466.	6.4	45
29	Multielement analysis of biological samples by inductively coupled plasma-mass spectrometry. II. Rapid survey method for profiling trace elements in body fluids. Clinical Chemistry, 1991, 37, 210-215.	3.2	44
30	Cellular Factors Mediate Cadmium-Dependent Actin Depolymerization. Toxicology and Applied Pharmacology, 1996, 139, 115-121.	2.8	44
31	Changes in Gene Expression with Iron Loading and Chelation in Cardiac Myocytes and Non-myocytic Fibroblasts. Journal of Molecular and Cellular Cardiology, 2000, 32, 233-246.	1.9	44
32	Pleiotropic effects of cadmium in mesangial cells. Toxicology and Applied Pharmacology, 2009, 238, 315-326.	2.8	42
33	Determination of Ni by ICP-MS: Correction of Calcium Oxide and Hydroxide Interferences Using Principal Components Analysis. Applied Spectroscopy, 1990, 44, 1685-1689.	2.2	41
34	Biomedical aspects of trace element speciation. Fresenius' Journal of Analytical Chemistry, 1999, 363, 505-511.	1.5	41
35	Speciation of tissue and cellular iron with on-line detection by inductively coupled plasma-mass spectrometry. Analytical Biochemistry, 1992, 205, 278-284.	2.4	40
36	Terminology of elemental speciation – An IUPAC perspective. Coordination Chemistry Reviews, 2017, 352, 424-431.	18.8	40

#	Article	IF	CITATIONS
37	Characterization of Fe2+ and Fe3+ transport by iron-loaded cardiac myocytes. Toxicology, 1997, 117, 141-151.	4.2	39
38	Glossary of terms used in ecotoxicology (IUPAC Recommendations 2009). Pure and Applied Chemistry, 2009, 81, 829-970.	1.9	39
39	Differential accumulation of non-transferrin-bound iron by cardiac myocytes and fibroblasts. Journal of Molecular and Cellular Cardiology, 2003, 35, 505-514.	1.9	37
40	Inhibition of mitogenesis and c-fos induction in mesangial cells by heparin and heparan sulfates. Kidney International, 1996, 49, 437-448.	5.2	32
41	The importance of trace element speciation in biomedical science. Analytical and Bioanalytical Chemistry, 2003, 375, 1062-1066.	3.7	32
42	Fletcher–Powell minimization of analytical potentiometric data by microcomputer: application to the Cu(II) complexes of biological polyamines. Canadian Journal of Chemistry, 1985, 63, 3122-3128.	1.1	29
43	Growth modulation and proteoglycan turnover in cultured mesangial cells. Journal of Cellular Physiology, 1994, 159, 295-310.	4.1	29
44	Mitochondrial involvement in genetically determined transition metal toxicity. Chemico-Biological Interactions, 2006, 163, 68-76.	4.0	29
45	Cadmium inhibits both intrinsic and extrinsic apoptotic pathways in renal mesangial cells. American Journal of Physiology - Renal Physiology, 2006, 290, F1074-F1082.	2.7	29
46	Protective effect of cadmium-induced autophagy in rat renal mesangial cells. Archives of Toxicology, 2018, 92, 619-631.	4.2	28
47	Effects of CdCl2 and Cd-metallothionein on cultured mesangial cells. Toxicology and Applied Pharmacology, 1992, 116, 133-141.	2.8	27
48	Effect of hypoxia on the binding and subcellular distribution of iron regulatory proteins. Molecular and Cellular Biochemistry, 2007, 301, 21-32.	3.1	27
49	Assessment of ICP-MS for routine multielement analysis of soil samples in environmental trace element studies. Fresenius' Journal of Analytical Chemistry, 1990, 336, 99-105.	1.5	26
50	Stress-Activated Protein Kinase-Dependent Induction of c-fos by Cd2+ Is Mediated by MKK7. Biochemical and Biophysical Research Communications, 2000, 273, 718-722.	2.1	26
51	Involvement of Gelsolin in Cadmium-Induced Disruption of the Mesangial Cell Cytoskeleton. Toxicological Sciences, 2006, 89, 465-474.	3.1	26
52	Multielement analysis of biological samples by inductively coupled plasma-mass spectrometry. Biological Trace Element Research, 1989, 22, 17-33.	3.5	24
53	Cadmium and calcium-dependent c-fos expression in mesangial cells. Toxicology Letters, 1998, 95, 1-8.	0.8	24
54	Speciation in Metal Toxicity and Metal-Based Therapeutics. Toxics, 2015, 3, 170-186.	3.7	24

DOUGLAS M TEMPLETON

#	Article	IF	CITATIONS
55	Effects of divalent metals on the isolated rat glomerulus. Toxicology, 1990, 61, 119-133.	4.2	22
56	lron accumulation and iron-regulatory protein activity in human hepatoma (HepG2) cells. Molecular and Cellular Biochemistry, 2004, 265, 37-45.	3.1	21
57	Iron-hydroxypyridone redox chemistry: kinetic and thermodynamic limitations to Fenton activity. Inorganica Chimica Acta, 1996, 245, 199-207.	2.4	20
58	Cadmium-induced glutathionylation of actin occurs through a ROS-independent mechanism: Implications for cytoskeletal integrity. Toxicology and Applied Pharmacology, 2013, 272, 423-430.	2.8	20
59	Determination of nickel in serum and urine by inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 1993, 8, 445.	3.0	19
60	Cadmium affects focal adhesion kinase (FAK) in mesangial cells: Involvement of CaMKâ€II and the actin cytoskeleton. Journal of Cellular Biochemistry, 2013, 114, 1832-1842.	2.6	19
61	Posttranscriptional effects of glucose on proteoglycan expression in mesangial cells. Metabolism: Clinical and Experimental, 1996, 45, 1136-1146.	3.4	18
62	Modulation of stellate cell proliferation and gene expression by rat hepatocytes: effect of toxic iron overload. Toxicology Letters, 2003, 144, 225-233.	0.8	18
63	Heparin suppresses lipid raft-mediated signaling and ligand-independent EGF receptor activation. Journal of Cellular Physiology, 2007, 211, 205-212.	4.1	18
64	Role of the cytoskeleton in Cd ²⁺ -induced death of mouse mesangial cellsThis article is one of a selection of papers published in a Special Issue on Oxidative Stress in Health and Disease Canadian Journal of Physiology and Pharmacology, 2010, 88, 341-352.	1.4	18
65	Effects of cadmium on the actin cytoskeleton in renal mesangial cells. Canadian Journal of Physiology and Pharmacology, 2013, 91, 1-7.	1.4	17
66	Heparin interaction with a receptor on hyperglycemic dividing cells prevents intracellular hyaluronan synthesis and autophagy responses in models of type 1 diabetes. Matrix Biology, 2015, 48, 36-41.	3.6	17
67	Evaluation of the Oral Iron Chelator 1,2-Dimethyl-3-hydroxypyrid-4-one (L1) in Iron-Loaded Patients. Annals of the New York Academy of Sciences, 1990, 612, 369-377.	3.8	16
68	lsotope-specific analysis of Ni by ICP-MS: applications of stable isotope tracers to biokinetic studies. Science of the Total Environment, 1994, 148, 253-262.	8.0	16
69	Immunological effects of mercury (IUPAC Technical Report). Pure and Applied Chemistry, 2009, 81, 153-167.	1.9	16
70	Cadmium favors F-actin depolymerization in rat renal mesangial cells by site-specific, disulfide-based dimerization of the CAP1 protein. Archives of Toxicology, 2018, 92, 1049-1064.	4.2	16
71	Metal-binding properties of the isolated glomerular basement membrane. Biochimica Et Biophysica Acta - General Subjects, 1987, 926, 94-105.	2.4	15
72	Use of inductively coupled plasma-mass spectrometry (icp-ms) for assessing trace element contamination in blood sampling devices. Science of the Total Environment, 1989, 89, 343-352.	8.0	15

DOUGLAS M TEMPLETON

#	Article	IF	CITATIONS
73	Measurement of platinum in biomedical silicones by ICP-MS. Analytical Proceedings, 1995, 32, 293.	0.4	14
74	Inhibition of an iron-responsive element/iron regulatory protein-1 complex by ATP binding and hydrolysis. FEBS Journal, 2007, 274, 3108-3119.	4.7	14
75	Effects of zinc deficiency of pre-existing cadmium-metallothionein in the pancreas. Toxicology, 1984, 29, 251-260.	4.2	13
76	Interaction of toxic cations with the glomerulus: Binding of Ni to purified glomerular basement membrane. Toxicology, 1987, 43, 1-15.	4.2	13
77	Cytokine profiles in human exposure to metals (IUPAC Technical Report). Pure and Applied Chemistry, 2006, 78, 2155-2168.	1.9	13
78	Explanatory dictionary of key terms in toxicology (IUPAC Recommendations 2007). Pure and Applied Chemistry, 2007, 79, 1583-1633.	1.9	13
79	Explanatory dictionary of key terms in toxicology: Part II (IUPAC Recommendations 2010). Pure and Applied Chemistry, 2010, 82, 679-751.	1.9	13
80	Iron-loaded cardiac myocytes stimulate cardiac myofibroblast DNA synthesis. Molecular and Cellular Biochemistry, 2006, 281, 77-85.	3.1	11
81	Involvement of CaMKâ€IIδ and gelsolin in Cd ²⁺ â€dependent cytoskeletal effects in mesangial cells. Journal of Cellular Physiology, 2013, 228, 78-86.	4.1	11
82	General occurrence of isosbestic points in the metachromatic dye complexes of sulphated glycosaminoglycans. International Journal of Biological Macromolecules, 1988, 10, 131-136.	7.5	10
83	Ca2+/calmodulin-dependent and cAMP-dependent kinases in induction of c-fos in human mesangial cells. American Journal of Physiology - Renal Physiology, 2002, 283, F888-F894.	2.7	10
84	Conserved charge of glomerular and mesangial cell proteoglycans: possible role of amino acid-derived sulphate. Canadian Journal of Physiology and Pharmacology, 1992, 70, 843-852.	1.4	9
85	Structure and metabolism of multiple heparan sulphate proteoglycans synthesized by the isolated rat glomerulus. Biochimica Et Biophysica Acta - Molecular Cell Research, 1992, 1136, 119-128.	4.1	9
86	Electrochemical oxidation of some therapeutic 3-hydroxypyridin-4-one iron chelators. Electrochimica Acta, 1993, 38, 2223-2230.	5.2	9
87	Heparan sulfate chains with antimitogenic properties arise from mesangial cell-surface proteoglycans. Metabolism: Clinical and Experimental, 1999, 48, 1220-1229.	3.4	9
88	Lymphocyte subpopulations in human exposure to metals (IUPAC Technical Report). Pure and Applied Chemistry, 2008, 80, 1349-1364.	1.9	9
89	Interaction of iron regulatory protein-1 (IRP-1) with ATP/ADP maintains a non-IRE-binding state. Biochemical Journal, 2010, 430, 315-324.	3.7	9
90	lmmunodiagnostics and immunosensor design (IUPAC Technical Report). Pure and Applied Chemistry, 2014, 86, 1539-1571.	1.9	9

DOUGLAS M TEMPLETON

#	Article	IF	CITATIONS
91	Heterogeneity in the response of vascular smooth muscle to heparin: altered signaling in heparin-resistant cells. Cardiovascular Research, 2000, 45, 503-512.	3.8	8
92	Suppression of mitogen-activated protein kinase phosphatase-1 (MKP-1) by heparin in vascular smooth muscle cells. Biochemical Pharmacology, 2003, 66, 769-776.	4.4	8
93	Ca2+/calmodulin-dependent protein kinase II inhibition by heparin in mesangial cells. American Journal of Physiology - Renal Physiology, 2005, 288, F142-F149.	2.7	8
94	Synthesis of heparan sulfate proteoglycans by the isolated glomerulus. Biochemistry and Cell Biology, 1988, 66, 1078-1085.	2.0	7
95	The Effects of Cardiac Myocytes on Interstitial Fibroblasts in Toxic Iron Overload. Cardiovascular Toxicology, 2001, 1, 299-308.	2.7	7
96	Nickel binding to the C-terminal tryptic fragment of a peptide from human kidney. Biochimica Et Biophysica Acta - General Subjects, 1986, 884, 383-386.	2.4	6
97	Cadmium-induced aggregation of iron regulatory protein-1. Toxicology, 2014, 324, 108-115.	4.2	6
98	Iron-dependent turnover of IRP-1/c-aconitase in kidney cells. Metallomics, 2015, 7, 766-775.	2.4	6
99	Chemical modifications of metallothionein, II. Metabolic fate of cadmium bound to metallothionein polymers. Toxicology Letters, 1985, 25, 279-286.	0.8	5
100	Acceleration of the mercury-induced aquation of bromopentammine Co(III) by naturally occurring glycosaminoglycans. Canadian Journal of Chemistry, 1987, 65, 2411-2420.	1.1	5
101	Variability of proteoglycan expression in the isolated rat glomerulus. Biochimica Et Biophysica Acta - General Subjects, 1990, 1033, 235-242.	2.4	5
102	A Northwestern blotting approach for studying iron regulatory element-binding proteins. Molecular and Cellular Biochemistry, 2005, 268, 67-74.	3.1	5
103	Transport of iron chelators and chelates across MDCK cell monolayers: implications for iron excretion during chelation therapy. International Journal of Hematology, 2010, 91, 401-412.	1.6	5
104	IUPAC glossary of terms used in immunotoxicology (IUPAC Recommendations 2012). Pure and Applied Chemistry, 2012, 84, 1113-1295.	1.9	5
105	Cell density-dependent shift in activity of iron regulatory protein 1 (IRP-1)/cytosolic (c-)aconitase. Metallomics, 2012, 4, 693.	2.4	5
106	LOW MOLECULAR WEIGHT TARGETS OF METALS IN HUMAN KIDNEY. Acta Pharmacologica Et Toxicologica, 1986, 59, 416-423.	0.0	4
107	Reversed-phase high-performance liquid chromatography of non-transferrin-bound iron and some hydroxypyridone and hydroxypyrone chelators. Biomedical Applications, 1994, 658, 121-127.	1.7	3
108	Inactivation of kinase cascades in mesangial cells grown on collagen type I. American Journal of Physiology - Renal Physiology, 1998, 275, F585-F594.	2.7	3

#	Article	IF	CITATIONS
109	Selected Examples of Important Metal-Protein Species. , 2005, , 638-649.		3
110	Applications of immunochemistry in human health: advances in vaccinology and antibody design (IUPAC Technical Report). Pure and Applied Chemistry, 2014, 86, 1573-1617.	1.9	3
111	IUPAC Glossary of terms used in neurotoxicology (IUPAC Recommendations 2015). Pure and Applied Chemistry, 2015, 87, 841-927.	1.9	3
112	Comparative studies of glutathione reductase and lipoamide dehydrogenase. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1988, 90, 335-339.	0.2	2
113	Lowâ€concentration heparin suppresses ionomycinâ€activated CAMKâ€II/EGF receptor―and ERKâ€mediated signaling in mesangial cells. Journal of Cellular Physiology, 2010, 224, 484-490.	4.1	2
114	Structural aspects of molecular recognition in the immune system. Part I: Acquired immunity (IUPAC) Tj ETQq0 0	0 [gBT /O	verlock 10 Tf
115	Acceleration of ionic reactions by naturally occurring glycosaminoglycans. II Inorganica Chimica Acta, 1988, 153, 165-170.	2.4	1
116	Glossary of terms used in developmental and reproductive toxicology (IUPAC Recommendations 2016). Pure and Applied Chemistry, 2016, 88, 713-830.	1.9	1
117	Transport of Non-Transferrin-Bound Iron by Hepatocytes. , 2002, , .		1
118	Immunochemical Recognition and Applications. Pure and Applied Chemistry, 2014, 86, 1433-1434.	1.9	0
119	Immunochemical Recognition and its Diagnostic and Therapeutic Applications. Chemistry International, 2015, 37, .	0.3	0
120	Undergraduate Specialist Program in Pathobiology at the University of Toronto. Academic Pathology, 2017, 4, 2374289517747594.	1.1	0

121 Interactions of Cadmium with Signaling Molecules. , 2018, , 53-81.