Peter M Gresshoff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7512668/publications.pdf

Version: 2024-02-01

44 papers 4,548 citations

28 h-index 243625 44 g-index

46 all docs

46 docs citations

46 times ranked

3070 citing authors

#	Article	IF	CITATIONS
1	Molecular Analysis of Legume Nodule Development and Autoregulation. Journal of Integrative Plant Biology, 2010, 52, 61-76.	8.5	532
2	Long-Distance Signaling in Nodulation Directed by a CLAVATA1-Like Receptor Kinase. Science, 2003, 299, 109-112.	12.6	496
3	Agrobacterium rhizogenes-mediated transformation of soybean to study root biology. Nature Protocols, 2007, 2, 948-952.	12.0	460
4	A Supernodulation and Nitrate-Tolerant Symbiotic (<i>nts</i>) Soybean Mutant. Plant Physiology, 1985, 78, 34-40.	4.8	372
5	Regulation of the Soybean- <i>Rhizobium</i> Nodule Symbiosis by Shoot and Root Factors. Plant Physiology, 1986, 82, 588-590.	4.8	314
6	Short root mutant of Lotus japonicus with a dramatically altered symbiotic phenotype. Plant Journal, 2000, 23, 97-114.	5.7	268
7	Legume nodulation: The host controls the party. Plant, Cell and Environment, 2019, 42, 41-51.	5.7	267
8	Inoculation- and Nitrate-Induced CLE Peptides of Soybean Control NARK-Dependent Nodule Formation. Molecular Plant-Microbe Interactions, 2011, 24, 606-618.	2.6	243
9	Identification of the Primary Lesion of Toxic Aluminum in Plant Roots Â. Plant Physiology, 2015, 167, 1402-1411.	4.8	194
10	Inoculation and nitrate alter phytohormone levels in soybean roots: differences between a supernodulating mutant and the wild type. Planta, 2000, 211, 98-104.	3.2	143
11	Growth comparisons of a supernodulating soybean (Glycine max) mutant and its wild-type parent. Physiologia Plantarum, 1986, 68, 375-382.	5. 2	99
12	Suppression of hypernodulation in soybean by a leafâ€extracted, NARK―and Nod factorâ€dependent, low molecular mass fraction. New Phytologist, 2010, 185, 1074-1086.	7.3	89
13	Transient Nod factorâ€dependent gene expression in the nodulationâ€competent zone of soybean (<i>Glycine max</i> [L.] Merr.) roots. Plant Biotechnology Journal, 2012, 10, 995-1010.	8.3	86
14	Promoters of Orthologous Glycine max and Lotus japonicus Nodulation Autoregulation Genes Interchangeably Drive Phloem-Specific Expression in Transgenic Plants. Molecular Plant-Microbe Interactions, 2007, 20, 769-780.	2.6	74
15	Alfalfa Controls Nodulation during the Onset of <i>Rhizobium</i> -induced Cortical Cell Division. Plant Physiology, 1991, 95, 366-373.	4.8	70
16	The value of biodiversity in legume symbiotic nitrogen fixation and nodulation for biofuel and food production. Journal of Plant Physiology, 2015, 172, 128-136.	3. 5	58
17	Mechanistic action of gibberellins in legume nodulation. Journal of Integrative Plant Biology, 2014, 56, 971-978.	8.5	55
18	The soybean (<i>Glycine max</i>)) nodulationâ€suppressive <scp>CLE</scp> peptide, Gm <scp>RIC</scp> 1, functions interspecifically in common white bean (<i>Phaseolus vulgaris</i>), but not in a supernodulating line mutated in the receptor Pv <scp>NARK</scp> . Plant Biotechnology Journal, 2014, 12, 1085-1097.	8.3	55

#	Article	IF	CITATIONS
19	Soybean Nodule Autoregulation Receptor Kinase Phosphorylates Two Kinase-associated Protein Phosphatases in Vitro. Journal of Biological Chemistry, 2008, 283, 25381-25391.	3.4	54
20	An efficient petiole-feeding bioassay for introducing aqueous solutions into dicotyledonous plants. Nature Protocols, 2011, 6, 36-45.	12.0	51
21	Genome-wide annotation and characterization of CLAVATA/ESR (CLE) peptide hormones of soybean (Glycine max) and common bean (Phaseolus vulgaris), and their orthologues ofArabidopsis thaliana. Journal of Experimental Botany, 2015, 66, 5271-5287.	4.8	46
22	CLE peptide-encoding gene families in Medicago truncatula and Lotus japonicus, compared with those of soybean, common bean and Arabidopsis. Scientific Reports, 2017, 7, 9384.	3.3	45
23	Post-genomic insights into plant nodulation symbioses. Genome Biology, 2003, 4, 201.	9.6	41
24	Local and Systemic Effect of Cytokinins on Soybean Nodulation and Regulation of Their Isopentenyl Transferase (IPT) Biosynthesis Genes Following Rhizobia Inoculation. Frontiers in Plant Science, 2018, 9, 1150.	3.6	41
25	Characterisation of <i>Medicago truncatula</i> CLE34 and CLE35 in nitrate and rhizobia regulation of nodulation. New Phytologist, 2021, 229, 2525-2534.	7.3	39
26	Arabinosylation Modulates the Growth-Regulating Activity of the Peptide Hormone CLE40a from Soybean. Cell Chemical Biology, 2017, 24, 1347-1355.e7.	5.2	35
27	Genetic analysis and complementation studies on a number of mutant supernodulating soybean lines. Journal of Genetics, 1988, 67, 1-8.	0.7	33
28	The structure and activity of nodulation-suppressing CLE peptide hormones of legumes. Functional Plant Biology, 2015, 42, 229.	2.1	31
29	Functional analysis of duplicated Symbiosis Receptor Kinase (SymRK) genes during nodulation and mycorrhizal infection in soybean (Glycine max). Journal of Plant Physiology, 2015, 176, 157-168.	3.5	30
30	Triarabinosylation is required for nodulationâ€suppressive CLE peptides to systemically inhibit nodulation in Pisum sativum. Plant, Cell and Environment, 2019, 42, 188-197.	5.7	29
31	Research note: Shoot control of hypernodulation and aberrant root formation in the har1-1 mutant of Lotus japonicus. Functional Plant Biology, 2002, 29, 1371.	2.1	28
32	Neodiversification of homeologous CLAVATA1-like receptor kinase genes in soybean leads to distinct developmental outcomes. Scientific Reports, 2017, 7, 8878.	3.3	25
33	Shootâ€derived <scp>miR2111</scp> controls legume root and nodule development. Plant, Cell and Environment, 2021, 44, 1627-1641.	5.7	24
34	Nodulation in the Legume Biofuel Feedstock Tree Pongamia pinnata. Agricultural Research, 2013, 2, 207-214.	1.7	22
35	Genetic and Genomic Analysis of the Tree Legume Pongamia pinnata as a Feedstock for Biofuels. Plant Genome, 2013, 6, plantgenome2013.05.0015.	2.8	17
36	De novo sequencing and characterization of seed transcriptome of the tree legume Millettia pinnata for gene discovery and SSR marker development. Molecular Breeding, 2016, 36, 1.	2.1	17

#	Article	IF	CITATIONS
37	Spatiotemporal changes in gibberellin content are required for soybean nodulation. New Phytologist, 2022, 234, 479-493.	7.3	14
38	Ecotypic variation of in vitro plantlet formation in white clover (Trifolium repens). Plant Cell Reports, 1982, 1, 189-92.	5.6	13
39	Amide metabolism of Chlamydomonas reinhardi. Archives of Microbiology, 1981, 128, 303-306.	2.2	10
40	Competitive growth of slow growingRhizobium japonicum against fast growingEnterobacter andPseudomonas species at low concentrations of succinate and other substrates in dialysis culture. Archives of Microbiology, 1985, 142, 223-228.	2.2	9
41	Isolation and Characterization of Circadian Clock Genes in the Biofuel Plant Pongamia (Millettia) Tj ETQq1 1 0.78	4314 rgBT	/Qverlock 1
42	A differential k-mer analysis pipeline for comparing RNA-Seq transcriptome and meta-transcriptome datasets without a reference. Functional and Integrative Genomics, 2019, 19, 363-371.	3.5	2
43	Role of hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase 1 in nodule development of soybean. Journal of Plant Physiology, 2021, 267, 153543.	3.5	1
44	Soybean CLE peptides and their CLAVATA-like signaling pathways. Advances in Botanical Research, 2022, , .	1.1	0