Dominic Rochefort

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7512589/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A comparative study on the influence of the polymeric host for the operation of all-solid-state batteries at different temperatures. Journal of Power Sources, 2022, 535, 231382.	7.8	2
2	Diphenoquinones Redux. Journal of Organic Chemistry, 2022, 87, 7673-7695.	3.2	1
3	Cross-Linked Polyacrylonitrile-Based Elastomer Used as Gel Polymer Electrolyte in Li-Ion Battery. ACS Applied Energy Materials, 2020, 3, 1099-1110.	5.1	49
4	Electrochemistry and transport properties of electrolytes modified with ferrocene redox-active ionic liquid additives. Canadian Journal of Chemistry, 2020, 98, 554-563.	1.1	4
5	Exploiting Materials to Their Full Potential, a Li-Ion Battery Electrode Formulation Optimization Study. ACS Applied Energy Materials, 2020, 3, 2935-2948.	5.1	23
6	Melt-processed electrode for lithium ion battery. Journal of Power Sources, 2020, 454, 227884.	7.8	17
7	Solid-State NMR and Electrochemical Dilatometry Study of Charge Storage in Supercapacitor with Redox Ionic Liquid Electrolyte. ECS Meeting Abstracts, 2020, MA2020-01, 6-6.	0.0	0
8	Impact of Water on the Properties of Litfsi-Acetonitrile Superconcentrated Electrolytes. ECS Meeting Abstracts, 2020, MA2020-01, 556-556.	0.0	0
9	On the Relevance of Reporting Water Content in Highly Concentrated Electrolytes: The LiTFSI-Acetonitrile Case. Journal of the Electrochemical Society, 2020, 167, 120536.	2.9	7
10	Interfacial Forces across Ionic Liquid Solutions: Effects of Ion Concentration and Water Domains. Langmuir, 2019, 35, 15585-15591.	3.5	7
11	Polyacrylonitrile-based rubber (HNBR) as a new potential elastomeric binder for lithium-ion battery electrodes. Journal of Power Sources, 2019, 440, 227111.	7.8	20
12	Enabling new electrochemical methods with redox-active ionic liquids. Current Opinion in Electrochemistry, 2019, 15, 125-132.	4.8	14
13	Electron transfer properties of a redox polyelectrolyte based on ferrocenated imidazolium. Electrochimica Acta, 2019, 305, 155-163.	5.2	5
14	Solid-state NMR and electrochemical dilatometry study of charge storage in supercapacitor with redox ionic liquid electrolyte. Energy Storage Materials, 2019, 20, 80-88.	18.0	19
15	Application of a Commercially-Available Fluorine-Free Thermoplastic Elastomer as a Binder for High-Power Li-Ion Battery Electrodes. Journal of the Electrochemical Society, 2019, 166, A1140-A1146.	2.9	5
16	Designs of Experiments for Beginners—A Quick Start Guide for Application to Electrode Formulation. Batteries, 2019, 5, 72.	4.5	30
17	Influence of the Formulation on the Microstructure and Thus Performance of Li-Ion Batteries. ECS Meeting Abstracts, 2019, , .	0.0	0
18	A Solvent-Free Approach to Lithium-Ion Battery Electrodes Using Melt-Processable Elastomeric Binders. ECS Meeting Abstracts, 2019, , .	0.0	0

DOMINIC ROCHEFORT

#	Article	IF	CITATIONS
19	(Invited) Dry Process for the Preparation of Porous Composite Electrodes for Battery Application. ECS Meeting Abstracts, 2019, , .	0.0	0
20	Melt-Processing of Electrodes for Lithium-Ion Batteries: A New Solvent-Free Approach. ECS Meeting Abstracts, 2019, , .	0.0	0
21	Melt-Process for the Preparation of Porous Composite Electrodes for Battery Application. ECS Meeting Abstracts, 2019, , .	0.0	0
22	An Artificial Lithium Protective Layer that Enables the Use of Acetonitrileâ€Based Electrolytes in Lithium Metal Batteries. Angewandte Chemie - International Edition, 2018, 57, 5072-5075.	13.8	97
23	An Artificial Lithium Protective Layer that Enables the Use of Acetonitrileâ€Based Electrolytes in Lithium Metal Batteries. Angewandte Chemie, 2018, 130, 5166-5169.	2.0	15
24	Crosslinker free thermally induced crosslinking of hydrogenated nitrile butadiene rubber. Journal of Polymer Science Part A, 2018, 56, 1825-1833.	2.3	15
25	Enhancing thermoelectrochemical properties by tethering ferrocene to the anion or cation of ionic liquids: altered thermodynamics and solubility. Physical Chemistry Chemical Physics, 2017, 19, 24255-24263.	2.8	17
26	Air-Stable, Self-Bleaching Electrochromic Device Based on Viologen- and Ferrocene-Containing Triflimide Redox Ionic Liquids. ACS Applied Materials & Interfaces, 2017, 9, 28726-28736.	8.0	97
27	Electroactive ionic liquids based on 2,5-ditert-butyl-1,4-dimethoxybenzene and triflimide anion as redox shuttle for Li4Ti5O12/LiFePO4 lithium-ion batteries. Journal of Power Sources, 2017, 372, 212-220.	7.8	12
28	Electrochemical and physicochemical properties of redox ionic liquids using electroactive anions: influence of alkylimidazolium chain length. Electrochimica Acta, 2016, 200, 283-289.	5.2	15
29	ARC Study of LiFePO ₄ with Different Morphologies Prepared via Three Synthetic Routes. Journal of the Electrochemical Society, 2016, 163, A1311-A1316.	2.9	19
30	Thermal Stability of High Voltage Li1-xMn1.5Ni0.5O4Cathode Material Synthesized via a Sol-Gel Method. Journal of the Electrochemical Society, 2016, 163, A947-A952.	2.9	7
31	Electrochemical and Transport Properties of Ions in Mixtures of Electroactive Ionic Liquid and Propylene Carbonate with a Lithium Salt for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2016, 120, 5315-5325.	3.1	19
32	Redox-active electrolyte supercapacitors using electroactive ionic liquids. Electrochemistry Communications, 2016, 66, 42-45.	4.7	85
33	Development of prototypes of bioactive packaging materials based on immobilized bacteriophages for control of growth of bacterial pathogens in foods. International Journal of Food Microbiology, 2016, 217, 49-58.	4.7	108
34	Redox Shuttles for Lithium-Ion Batteries at Concentrations up to 1 M Using an Electroactive Ionic Liquid Based on 2,5-di- <i>tert</i> -butyl-1,4-dimethoxybenzene. Journal of the Electrochemical Society, 2015, 162, A1432-A1438.	2.9	16
35	Electrolyte-Gated WO ₃ Transistors: Electrochemistry, Structure, and Device Performance. Journal of Physical Chemistry C, 2015, 119, 21732-21738.	3.1	42
36	Synthesis and characterization of an electroactive ionic liquid based on the ferrocenylsulfonyl(trifluoromethylsulfonyl)imide anion. Electrochimica Acta, 2015, 162, 36-44.	5.2	23

DOMINIC ROCHEFORT

#	Article	IF	CITATIONS
37	Conductivity and Electrochemistry of Ferrocenyl-Imidazolium Redox Ionic Liquids with Different Alkyl Chain Lengths. Journal of the Electrochemical Society, 2014, 161, H161-H165.	2.9	19
38	Electrochemistry of ruthenium dioxide composite electrodes in diethylmethylammonium-triflate protic ionic liquid and its mixtures with acetonitrile. Electrochimica Acta, 2014, 147, 96-103.	5.2	21
39	Electrochemical functionalization of glassy carbon electrode by reduction of diazonium cations in protic ionic liquid. Electrochimica Acta, 2013, 106, 378-385.	5.2	31
40	Electroactive imidazolium salts based on 1,4-dimethoxybenzene redox groups: synthesis and electrochemical characterisation. RSC Advances, 2013, 3, 12035.	3.6	18
41	Electrochemical and Spectroelectrochemical Evidence of Redox Transitions Involving Protons in Thin MnO ₂ Electrodes in Protic Ionic Liquids. Journal of Physical Chemistry C, 2013, 117, 20397-20405.	3.1	23
42	Fast and effective paper based sensor for self-diagnosis of bacterial vaginosis. Analytica Chimica Acta, 2013, 800, 87-94.	5.4	12
43	Hydrogen absorption by a palladium electrode from a protic ionic liquid at temperatures exceeding 100°C. Electrochemistry Communications, 2013, 34, 102-104.	4.7	14
44	Electrochemical characterisation of a lithium-ion battery electrolyte based on mixtures of carbonates with a ferrocene-functionalised imidazolium electroactive ionic liquid. Physical Chemistry Chemical Physics, 2013, 15, 7713.	2.8	53
45	Mesomorphic and ion conducting properties of dialkyl(1,4-phenylene)diimidazolium salts. Soft Matter, 2012, 8, 10914.	2.7	24
46	Characterisation and applications of microcapsules obtained by interfacial polycondensation. Journal of Microencapsulation, 2012, 29, 636-649.	2.8	53
47	Printing of Polymer Microcapsules for Enzyme Immobilization on Paper Substrate. Biomacromolecules, 2011, 12, 2008-2015.	5.4	43
48	Activity, stability and inhibition of a bioactive paper prepared by large-scale coating of laccase microcapsules. Chemical Engineering Science, 2011, 66, 5313-5320.	3.8	23
49	Synthesis, Characterization of Nanostructured Rhodium Films and their Electrochemical Behavior towards Carbon Monoxide Oxidation. Electrocatalysis, 2011, 2, 114-122.	3.0	6
50	Activity, conformation and thermal stability of laccase and glucose oxidase in poly(ethyleneimine) microcapsules for immobilization in paper. Process Biochemistry, 2011, 46, 993-1000.	3.7	57
51	Pyridinium-based protic ionic liquids as electrolytes for RuO2 electrochemical capacitors. Journal of Power Sources, 2010, 195, 5114-5121.	7.8	59
52	Comparison of emulsion and vibration nozzle methods for microencapsulation of laccase and glucose oxidase by interfacial reticulation of poly(ethyleneimine). Journal of Microencapsulation, 2010, 27, 703-713.	2.8	25
53	Carbon Monoxide Oxidation on Nanostructured Pt Thin Films Synthesized by Pulsed Laser Deposition: Insights into the Morphology Effects. Laser Chemistry, 2010, 2010, 1-7.	0.5	1
54	Confocal microscopy study of polymer microcapsules for enzyme immobilisation in paper substrates. Journal of Applied Polymer Science, 2009, 111, 1-10.	2.6	34

DOMINIC ROCHEFORT

#	Article	IF	CITATIONS
55	Origin and effect of impurities in protic ionic liquids based on 2-methylpyridine and trifluoroacetic acid for applications in electrochemistry. Electrochimica Acta, 2009, 54, 7422-7428.	5.2	14
56	Development of an enzymatic microreactor based on microencapsulated laccase with off-line capillary electrophoresis for measurement of oxidation reactions. Journal of Chromatography A, 2009, 1216, 8270-8276.	3.7	18
57	Influence of the Conductivity and Viscosity of Protic Ionic Liquids Electrolytes on the Pseudocapacitance of RuO ₂ Electrodes. Journal of Physical Chemistry C, 2009, 113, 1632-1639.	3.1	55
58	Physical immobilization of laccase on an electrode by means of poly(ethyleneimine) microcapsules. Journal of Electroanalytical Chemistry, 2008, 617, 53-63.	3.8	45
59	Electrode passivation by reaction products of the electrochemical and enzymatic oxidation of p-phenylenediamine. Electrochimica Acta, 2008, 53, 5272-5279.	5.2	38
60	A high-throughput search for direct methanol fuel cell anode electrocatalysts of type PtxBiyPbz. Applied Surface Science, 2007, 254, 653-661.	6.1	26
61	High throughput screening of electrocatalysts for fuel cell applications. Review of Scientific Instruments, 2006, 77, 054104.	1.3	59
62	Pseudocapacitive behaviour of RuO2 in a proton exchange ionic liquid. Electrochemistry Communications, 2006, 8, 1539-1543.	4.7	119
63	Surface composition of ordered intermetallic compounds PtBi and PtPb. Surface Science, 2006, 600, 2670-2680.	1.9	78
64	Surface modification of co-evaporated thin films upon oxygen and air exposure. Surface Science, 2005, 595, 73-86.	1.9	3
65	Modification to the composition of nanocrystalline RuO2 through reactive milling under O2. Journal of Alloys and Compounds, 2005, 400, 257-264.	5.5	11
66	Electron transfer mediator systems for bleaching of paper pulp. Green Chemistry, 2004, 6, 14.	9.0	114
67	Targetting redox polymers as mediators for laccase oxygen reduction in a membrane-less biofuel cell. Electrochemistry Communications, 2004, 6, 237-241.	4.7	150
68	Effect of Graphite on the Electrochemical Properties of Ballmilled RuO[sub 2]. Journal of the Electrochemical Society, 2004, 151, A1141.	2.9	4
69	XPS investigations of thermally prepared RuO2 electrodes in reductive conditions. Electrochimica Acta, 2003, 48, 4245-4252.	5.2	175
70	Oxidation of lignin model compounds by organic and transition metal-based electron transfer mediators. Chemical Communications, 2002, , 1182-1183.	4.1	39
71	Electrochemical Oxidation of Transition Metal-Based Mediators for Pulp Delignification. Journal of the Electrochemical Society, 2002, 149, D15.	2.9	16