Timothy Cameron Ralph

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7512469/timothy-cameron-ralph-publications-by-year.pdf

Version: 2024-04-26

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

297	16,355	59	122
papers	citations	h-index	g-index
353 ext. papers	19,233 ext. citations	6.1 avg, IF	6.74 L-index

#	Paper	IF	Citations
297	Gravitational acceleration estimation with a nonlinear Mach Dehnder interferometer. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2022 , 39, 421	1.7	O
296	Quantum channel correction outperforming direct transmission <i>Nature Communications</i> , 2022 , 13, 183	1217.4	1
295	Ideal Quantum Teleamplification up to a Selected Energy Cutoff Using Linear Optics <i>Physical Review Letters</i> , 2022 , 128, 160501	7.4	O
294	Composable finite-size effects in free-space continuous-variable quantum-key-distribution systems. <i>Physical Review A</i> , 2021 , 103,	2.6	7
293	Finite-size effects in continuous-variable quantum key distribution with Gaussian postselection. <i>Physical Review A</i> , 2020 , 101,	2.6	2
292	Teleportation-based collective attacks in Gaussian quantum key distribution. <i>Physical Review Research</i> , 2020 , 2,	3.9	4
291	Generating multi-partite entanglement from the quantum vacuum with a finite-lifetime mirror. <i>New Journal of Physics</i> , 2020 , 22, 083075	2.9	2
2 90	Quantum repeater for continuous-variable entanglement distribution. <i>Physical Review A</i> , 2020 , 102,	2.6	3
289	Generalized quantum scissors for noiseless linear amplification. <i>Physical Review A</i> , 2020 , 102,	2.6	8
288	Multipartite Gaussian entanglement of formation. <i>Physical Review A</i> , 2020 , 102,	2.6	1
287	Continuous-variable quantum teleportation with vacuum-entangled Rindler modes. <i>Physical Review D</i> , 2020 , 101,	4.9	4
286	Satellite testing of a gravitationally induced quantum decoherence model. <i>Science</i> , 2019 , 366, 132-135	33.3	14
285	Tight bounds for private communication over bosonic Gaussian channels based on teleportation simulation with optimal finite resources. <i>Physical Review A</i> , 2019 , 100,	2.6	6
284	Estimation of gravitational acceleration with quantum optical interferometers. <i>Physical Review A</i> , 2019 , 99,	2.6	3
283	Quantum metrology in the Kerr metric. <i>Physical Review D</i> , 2019 , 99,	4.9	4
282	Optimal realistic attacks in continuous-variable quantum key distribution. <i>Physical Review A</i> , 2019 , 99,	2.6	7
281	Quantifying entanglement of formation for two-mode Gaussian states: Analytical expressions for upper and lower bounds and numerical estimation of its exact value. <i>Physical Review A</i> , 2019 , 99,	2.6	9

(2018-2019)

280	Quantum correlations and global coherence in distributed quantum computing. <i>Physical Review A</i> , 2019 , 99,	2.6	14
279	Universal transformation of displacement operators and its application to homodyne tomography in differing relativistic reference frames. <i>Physical Review D</i> , 2019 , 99,	4.9	2
278	Applications of Quantum Light 2019 , 377-424		
277	QND 2019 , 425-439		
276	Fundamental Tests of Quantum Mechanics 2019 , 441-471		
275	Quantum Information 2019 , 473-531		
274	Quantum Models of Light 2019 , 93-137		
273	Lasers and Amplifiers 2019 , 199-232		
272	Quantum Noise: Basic Measurements and Techniques 2019 , 269-301		O
271	Squeezed Light 2019 , 303-376		
270	Reversible time travel with freedom of choice. Classical and Quantum Gravity, 2019, 36, 224002	3.3	6
269	Passive, Broadband, and Low-Frequency Suppression of Laser Amplitude Noise to the Shot-Noise Limit Using a Hollow-Core Fiber. <i>Physical Review Applied</i> , 2019 , 12,	4.3	3
268	Fundamental building block for all-optical scalable quantum networks. <i>Physical Review A</i> , 2019 , 100,	2.6	14
267	Decoherence of the Radiation from an Accelerated Quantum Source. <i>Physical Review X</i> , 2019 , 9,	9.1	6
266	Passive quantum error correction of linear optics networks through error averaging. <i>Physical Review A</i> , 2018 , 97,	2.6	6
265	Violation of Bell's Inequality Using Continuous Variable Measurements. <i>Physical Review Letters</i> , 2018 , 120, 040406	7.4	13
264	Quantum error correction of continuous-variable states with realistic resources. <i>Physical Review A</i> , 2018 , 97,	2.6	10
263	Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. <i>Nature Photonics</i> , 2018 , 12, 534-539	33.9	239

262	Particle production and apparent decoherence due to an accelerated time delay. <i>Physical Review D</i> , 2018 , 98,	4.9	4
261	Simulation of Gaussian channels via teleportation and error correction of Gaussian states. <i>Physical Review A</i> , 2018 , 98,	2.6	10
260	Can the fluctuations of the quantum vacuum solve the cosmological constant problem?. <i>Physical Review D</i> , 2018 , 98,	4.9	13
259	Generation of a Cat State in an Optical Sideband. <i>Physical Review Letters</i> , 2018 , 121, 143602	7.4	10
258	Space QUEST mission proposal: experimentally testing decoherence due to gravity. <i>New Journal of Physics</i> , 2018 , 20, 063016	2.9	20
257	Quantum repeaters using continuous-variable teleportation. <i>Physical Review A</i> , 2017 , 95,	2.6	37
256	Experimental test of photonic entanglement in accelerated reference frames. <i>Nature Communications</i> , 2017 , 8, 15304	17.4	17
255	Quantum circuit model for non-inertial objects: a uniformly accelerated mirror. <i>New Journal of Physics</i> , 2017 , 19, 063017	2.9	10
254	Ultrafine Entanglement Witnessing. <i>Physical Review Letters</i> , 2017 , 118, 110502	7.4	20
253	Quantum-limited measurement of space-time curvature with scaling beyond the conventional Heisenberg limit. <i>Physical Review A</i> , 2017 , 96,	2.6	7
252	Black hole squeezers. <i>Physical Review D</i> , 2017 , 96,	4.9	4
251	Quantum Correlations in Nonlocal Boson Sampling. <i>Physical Review Letters</i> , 2017 , 119, 120502	7.4	16
250	Quantum sampling problems, BosonSampling and quantum supremacy. <i>Npj Quantum Information</i> , 2017 , 3,	8.6	67
249	Exact boson sampling using Gaussian continuous-variable measurements. <i>Physical Review A</i> , 2017 , 96,	2.6	18
248	Measurement-Device-Independent Approach to Entanglement Measures. <i>Physical Review Letters</i> , 2017 , 118, 150505	7.4	13
247	Quantifying entanglement in two-mode Gaussian states. <i>Physical Review A</i> , 2017 , 96,	2.6	19
246	On the problem of non-zero word error rates for fixed-rate error correction codes in continuous variable quantum key distribution. <i>New Journal of Physics</i> , 2017 , 19, 023003	2.9	4
245	Quantum enhancement of signal-to-noise ratio with a heralded linear amplifier. <i>Optica</i> , 2017 , 4, 1421	8.6	8

(2015-2016)

244	Models of reduced-noise, probabilistic linear amplifiers. <i>Physical Review A</i> , 2016 , 93,	2.6	8
243	Spacetime diamonds. <i>Physical Review D</i> , 2016 , 93,	4.9	5
242	Channel purification via continuous-variable quantum teleportation with Gaussian postselection. <i>Physical Review A</i> , 2016 , 93,	2.6	9
241	Estimating spacetime parameters with a quantum probe in a lossy environment. <i>Physical Review D</i> , 2016 , 93,	4.9	9
240	Sufficient Conditions for Efficient Classical Simulation of Quantum Optics. <i>Physical Review X</i> , 2016 , 6,	9.1	64
239	Surpassing the no-cloning limit with a heralded hybrid linear amplifier for coherent states. <i>Nature Communications</i> , 2016 , 7, 13222	17.4	22
238	Experimental demonstration of Gaussian protocols for one-sided device-independent quantum key distribution. <i>Optica</i> , 2016 , 3, 634	8.6	74
237	Arbitrary multi-qubit generation. New Journal of Physics, 2016, 18, 103020	2.9	5
236	A quantum Fredkin gate. Science Advances, 2016, 2, e1501531	14.3	75
235	A certification scheme for the boson sampler. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2016 , 33, 1835	1.7	9
²³⁵		2.6	9
	Physics, 2016, 33, 1835 Properties of hybrid entanglement between discrete- and continuous-variable states of light.		
234	Physics, 2016, 33, 1835 Properties of hybrid entanglement between discrete- and continuous-variable states of light. Physica Scripta, 2015, 90, 074045 Photon sorting, efficient bell measurements, and a deterministic controlled-Z gate using a passive	2.6	8
234	Physics, 2016, 33, 1835 Properties of hybrid entanglement between discrete- and continuous-variable states of light. Physica Scripta, 2015, 90, 074045 Photon sorting, efficient bell measurements, and a deterministic controlled-Z gate using a passive two-level nonlinearity. Physical Review Letters, 2015, 114, 173603 Nearly deterministic bell measurement for multiphoton qubits and its application to quantum	2.6 7·4	8
234 233 232	Properties of hybrid entanglement between discrete- and continuous-variable states of light. Physica Scripta, 2015, 90, 074045 Photon sorting, efficient bell measurements, and a deterministic controlled-Z gate using a passive two-level nonlinearity. Physical Review Letters, 2015, 114, 173603 Nearly deterministic bell measurement for multiphoton qubits and its application to quantum information processing. Physical Review Letters, 2015, 114, 113603	2.6 7·4 7·4	8 30 21
234233232231	Physics, 2016, 33, 1835 Properties of hybrid entanglement between discrete- and continuous-variable states of light. Physica Scripta, 2015, 90, 074045 Photon sorting, efficient bell measurements, and a deterministic controlled-Z gate using a passive two-level nonlinearity. Physical Review Letters, 2015, 114, 173603 Nearly deterministic bell measurement for multiphoton qubits and its application to quantum information processing. Physical Review Letters, 2015, 114, 113603 Undoing the effect of loss on quantum entanglement. Nature Photonics, 2015, 9, 764-768 Operational discord measure for Gaussian states with Gaussian measurements. New Journal of	2.6 7·4 7·4 33·9	8 30 21 53
234233232231230	Properties of hybrid entanglement between discrete- and continuous-variable states of light. Physica Scripta, 2015, 90, 074045 Photon sorting, efficient bell measurements, and a deterministic controlled-Z gate using a passive two-level nonlinearity. Physical Review Letters, 2015, 114, 173603 Nearly deterministic bell measurement for multiphoton qubits and its application to quantum information processing. Physical Review Letters, 2015, 114, 113603 Undoing the effect of loss on quantum entanglement. Nature Photonics, 2015, 9, 764-768 Operational discord measure for Gaussian states with Gaussian measurements. New Journal of Physics, 2015, 17, 063037	2.6 7·4 7·4 33·9 2.9	8 30 21 53 2

226	What can quantum optics say about computational complexity theory?. <i>Physical Review Letters</i> , 2015 , 114, 060501	7.4	43
225	Measurement-based noiseless linear amplification for quantum communication. <i>Nature Photonics</i> , 2014 , 8, 333-338	33.9	65
224	Entanglement-free certification of entangling gates. <i>Physical Review A</i> , 2014 , 89,	2.6	12
223	Experimental simulation of closed timelike curves. <i>Nature Communications</i> , 2014 , 5, 4145	17.4	29
222	Generation of hybrid entanglement of light. <i>Nature Photonics</i> , 2014 , 8, 564-569	33.9	120
221	Boson sampling from a Gaussian state. <i>Physical Review Letters</i> , 2014 , 113, 100502	7.4	145
220	Spacetime effects on satellite-based quantum communications. <i>Physical Review D</i> , 2014 , 90,	4.9	55
219	Quantum estimation of the Schwarzschild spacetime parameters of the Earth. <i>Physical Review D</i> , 2014 , 90,	4.9	34
218	Theoretical analysis of an ideal noiseless linear amplifier for Einstein Podolsky Rosen entanglement distillation. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2014 , 47, 215503	1.3	7
217	Experimental verification of quantum discord in continuous-variable states. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2014 , 47, 025503	1.3	13
216	Experimental hybrid entanglement between quantum and classical states of light. <i>International Journal of Quantum Information</i> , 2014 , 12, 1560015	0.8	4
215	Entanglement decoherence in a gravitational well according to the event formalism. <i>New Journal of Physics</i> , 2014 , 16, 085008	2.9	15
214	Experimental verification of quantum discord in continuous-variable states and operational significance of discord consumption 2014 ,		1
213	Detecting the degree of macroscopic quantumness using an overlap measurement. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2014 , 31, 3057	1.7	11
212	Optimal architecture for a nondeterministic noiseless linear amplifier. <i>Physical Review A</i> , 2014 , 89,	2.6	26
211	Quantum communication in the presence of a horizon. <i>Physical Review D</i> , 2014 , 90,	4.9	9
210	Configurable unitary transformations and linear logic gates using quantum memories. <i>Physical Review Letters</i> , 2014 , 113, 063601	7·4	23
209	High-fidelity teleportation of continuous-variable quantum states using delocalized single photons. <i>Physical Review Letters</i> , 2013 , 111, 050504	7.4	38

(2012-2013)

208	Generation of distributed entangled coherent states over a lossy environment with inefficient detectors. <i>Physical Review A</i> , 2013 , 88,	2.6	6
207	Implementation of a quantum Fredkin gate using an entanglement resource 2013,		1
206	Measurement-based method for verifying quantum discord. Physical Review A, 2013, 87,	2.6	22
205	Photonic boson sampling in a tunable circuit. <i>Science</i> , 2013 , 339, 794-8	33.3	417
204	Heralded noiseless amplification of a photon polarization qubit. <i>Nature Physics</i> , 2013 , 9, 23-28	16.2	90
203	Open timelike curves violate Heisenberg's uncertainty principle. <i>Physical Review Letters</i> , 2013 , 110, 060	05 / 0.4	16
202	Quantum communication with an accelerated partner. Physical Review A, 2013, 87,	2.6	26
2 01	Security of continuous-variable quantum cryptography with Gaussian postselection. <i>Physical Review A</i> , 2013 , 87,	2.6	49
200	Quantum-state cloning in the presence of a closed timelike curve. Physical Review A, 2013, 88,	2.6	19
199	Direct characterization of linear-optical networks. <i>Optics Express</i> , 2013 , 21, 13450-8	3.3	59
198	Nondeterministic noiseless amplification via non-symplectic phase space transformations. <i>New Journal of Physics</i> , 2013 , 15, 073014	2.9	19
197	Calculating unknown eigenvalues with a quantum algorithm. <i>Nature Photonics</i> , 2013 , 7, 223-228	33.9	34
196	Reconstruction of photon number conditioned states using phase randomized homodyne measurements. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2013 , 46, 104009	1.3	4
195	Relativistic quantum information. Classical and Quantum Gravity, 2012, 29, 220301	3.3	21
194	Continuous-variable quantum key distribution using thermal states. <i>Physical Review A</i> , 2012 , 86,	2.6	79
193	Extraction of timelike entanglement from the quantum vacuum. <i>Physical Review A</i> , 2012 , 85,	2.6	42
192	Entanglement dynamics and quasi-periodicity in discrete quantum walks. <i>Journal of Modern Optics</i> , 2012 , 59, 710-720	1.1	15
191	Observing the operational significance of discord consumption. <i>Nature Physics</i> , 2012 , 8, 671-675	16.2	180

190	Quantum-enhanced optical-phase tracking. <i>Science</i> , 2012 , 337, 1514-7	33.3	148
189	Error tolerance of the boson-sampling model for linear optics quantum computing. <i>Physical Review A</i> , 2012 , 85,	2.6	56
188	Relativistic quantum information and time machines. Contemporary Physics, 2012, 53, 1-16	3.3	21
187	Gaussian quantum information. Reviews of Modern Physics, 2012, 84, 621-669	40.5	1734
186	General relativistic effects in quantum interference of photons. <i>Classical and Quantum Gravity</i> , 2012 , 29, 224010	3.3	52
185	Entanglement between the future and the past in the quantum vacuum. <i>Physical Review Letters</i> , 2011 , 106, 110404	7.4	70
184	Space-time qubits. <i>Physical Review A</i> , 2011 , 84,	2.6	3
183	Quantum fields on closed timelike curves. <i>Physical Review A</i> , 2011 , 84,	2.6	4
182	Engineered optical nonlinearity for quantum light sources. Optics Express, 2011, 19, 55-65	3.3	84
181	Adding control to arbitrary unknown quantum operations. <i>Nature Communications</i> , 2011 , 2, 413	17.4	77
180	Coherent state topological cluster state production. New Journal of Physics, 2011, 13, 115015	2.9	14
179	Time-resolved detection and mode mismatch in a linear optics quantum gate. <i>New Journal of Physics</i> , 2011 , 13, 053036	2.9	1
178	Entangling moving cavities in noninertial frames. <i>Physical Review Letters</i> , 2011 , 106, 210502	7.4	44
177	Reply to Comment on Information flow of quantum states interacting with closed timelike curves IPhysical Review A, 2011 , 84,	2.6	1
176	Photon-number discrimination without a photon counter and its application to reconstructing non-Gaussian states. <i>Physical Review A</i> , 2011 , 84,	2.6	5
175	Quantum error correction of continuous-variable states against Gaussian noise. <i>Physical Review A</i> , 2011 , 84,	2.6	60
174	Time Ordering in Spontaneous Parametric Down-conversion 2011,		5
173	Heralded noiseless linear amplification and distillation of entanglement. <i>Nature Photonics</i> , 2010 , 4, 316	-339	214

Adaptive optical phase estimation 2010, 7 172 Linear optical quantum computation with imperfect entangled photon-pair sources and inefficient 2.6 171 10 nonBhoton-number-resolving detectors. Physical Review A, 2010, 81, High-fidelity operation of quantum photonic circuits. Applied Physics Letters, 2010, 97, 211109 60 170 3.4 Arbitrarily large continuous-variable cluster states from a single quantum nondemolition gate. 169 49 7.4 Physical Review Letters, **2010**, 104, 250503 Optimized generation of heralded Fock states using parametric down-conversion. New Journal of 168 2.9 60 Physics, 2010, 12, 063001 Optical Quantum Computation. Progress in Optics, 2010, 209-269 167 42 3.4 Adaptive optical phase estimation using time-symmetric quantum smoothing. Physical Review 166 7.4 65 Letters, 2010, 104, 093601 Quantum cryptography approaching the classical limit. Physical Review Letters, 2010, 105, 110501 165 101 7.4 Multiplexed communication over a high-speed quantum channel. Physical Review A, 2010, 81, 164 2.6 13 163 Coherent State Quantum Key Distribution with Continuous-Wave Laser Beams 2010, Fault tolerance in parity-state linear optical quantum computing. Physical Review A, 2010, 82, 162 2.6 19 Fair-sampling assumption is not necessary for testing local realism. Physical Review A, 2010, 81, 161 2.6 19 Information flow of quantum states interacting with closed timelike curves. Physical Review A, 2010 160 2.6 27 , 82, Quantum connectivity of space-time and gravitationally induced decorrelation of entanglement. 2.6 159 49 Physical Review A, 2009, 79, Quantum computing with continuous-variable clusters. Physical Review A, 2009, 79, 158 2.6 194 Violations of Bell inequality for Gaussian states with homodyne detection and nonlinear 2.6 157 interactions. Physical Review A, 2009, 79, Distinguishability of Gaussian states in quantum cryptography using postselection. Physical Review 2.6 156 2 A, 2009, 79, Nondeterministic Noiseless Linear Amplification of Quantum Systems 2009, 155 72

154	Editorial Introduction to the Special Issue on Quantum Communications and Information Science. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2009 , 15, 1545-1546	3.8	1
153	Tomography of quantum detectors. <i>Nature Physics</i> , 2009 , 5, 27-30	16.2	197
152	Simplifying quantum logic using higher-dimensional Hilbert spaces. <i>Nature Physics</i> , 2009 , 5, 134-140	16.2	428
151	Failure of local realism revealed by extremely-coarse-grained measurements. <i>Physical Review Letters</i> , 2009 , 102, 060403	7.4	45
150	Continuous-variable entanglement distillation over a general lossy channel. <i>Physical Review A</i> , 2009 , 80,	2.6	26
149	Spectral effects of strong (2) nonlinearity for quantum processing. <i>Physical Review A</i> , 2009 , 79,	2.6	8
148	Quantum cloning of continuous-variable entangled states. <i>Physical Review A</i> , 2008 , 77,	2.6	14
147	Proposal for optical parity state re-encoder. <i>Journal of Modern Optics</i> , 2008 , 55, 2415-2428	1.1	1
146	Entangled non-Gaussian states formed by mixing Gaussian states. <i>Journal of Modern Optics</i> , 2008 , 55, 2083-2094	1.1	3
145	Methods for a linear optical quantum Fredkin gate. <i>Physical Review A</i> , 2008 , 78,	2.6	40
144	Loss-tolerant operations in parity-code linear optics quantum computing. <i>Physical Review A</i> , 2008 , 77,	2.6	3
143	Single-photon side bands. <i>Physical Review A</i> , 2008 , 77,	2.6	10
142	Teleportation using squeezed single photons. <i>Physical Review A</i> , 2008 , 78,	2.6	6
141	Fault-tolerant linear optical quantum computing with small-amplitude coherent States. <i>Physical Review Letters</i> , 2008 , 100, 030503	7.4	172
140	Efficient Toffoli gates using qudits. <i>Physical Review A</i> , 2007 , 75,	2.6	158
139	Experimental demonstration of post-selection-based continuous-variable quantum key distribution in the presence of Gaussian noise. <i>Physical Review A</i> , 2007 , 76,	2.6	29
138	Linear optical quantum computing with photonic qubits. Reviews of Modern Physics, 2007, 79, 135-174	40.5	1596
137	Photon number projection using non-number-resolving detectors. <i>New Journal of Physics</i> , 2007 , 9, 233-	23.3)	12

(2006-2007)

136	Optical zeno gate: bounds for fault tolerant operation. New Journal of Physics, 2007, 9, 224-224	2.9	11
135	Error tolerance and tradeoffs in loss- and failure-tolerant quantum computing schemes. <i>Physical Review A</i> , 2007 , 75,	2.6	12
134	Violation of Bell inequality using classical measurements and nonlinear local operations. <i>Physical Review A</i> , 2007 , 75,	2.6	56
133	Quantum superpositions and entanglement of thermal states at high temperatures and their applications to quantum-information processing. <i>Physical Review A</i> , 2007 , 76,	2.6	22
132	Quantum noise limits to simultaneous quadrature amplitude and phase stabilization of solid-state lasers. <i>Physical Review A</i> , 2007 , 75,	2.6	2
131	Measuring photon antibunching from continuous variable sideband squeezing. <i>Physical Review Letters</i> , 2007 , 98, 153603	7.4	47
130	Unitary solution to a quantum gravity information paradox. <i>Physical Review A</i> , 2007 , 76,	2.6	13
129	Efficient parity-encoded optical quantum computing. <i>Physical Review A</i> , 2007 , 75,	2.6	19
128	Quantum and classical fidelities for Gaussian states. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2007 , 24, 355	1.7	7
127	Observation of a comb of optical squeezing over many gigahertz of bandwidth. <i>Optics Express</i> , 2007 , 15, 5310-7	3.3	14
126	PHYSICS. Better computing with photons. <i>Science</i> , 2007 , 318, 1251-2	33.3	3
125	Schrlinger Cat States for Quantum Information Processing 2007, 159-179		6
124	Quantum optical systems for the implementation of quantum information processing. <i>Reports on Progress in Physics</i> , 2006 , 69, 853-898	14.4	36
123	Practical limitations in optical entanglement purification. <i>Physical Review A</i> , 2006 , 73,	2.6	6
122	Error models for mode mismatch in linear optics quantum computing. <i>Physical Review A</i> , 2006 , 73,	2.6	14
121	Generation of a frequency comb of squeezing in an optical parametric oscillator. <i>Physical Review A</i> , 2006 , 73,	2.6	11
120	Quantum-state engineering with continuous-variable postselection. <i>Physical Review A</i> , 2006 , 73,	2.6	28
119	Improving the fidelity of optical Zeno gates via distillation. <i>Physical Review A</i> , 2006 , 74,	2.6	14

118	Quantum memory scheme based on optical fibers and cavities. <i>Physical Review A</i> , 2006 , 74,	2.6	13
117	Homodyne measurement of the average photon number. <i>Physical Review A</i> , 2006 , 73,	2.6	14
116	Coherent-state quantum key distribution without random basis switching. <i>Physical Review A</i> , 2006 , 73,	2.6	33
115	Quantum nondemolition measurements for quantum information. <i>Physical Review A</i> , 2006 , 73,	2.6	71
114	Transfer of nonclassical properties from a microscopic superposition to macroscopic thermal states in the high temperature limit. <i>Physical Review Letters</i> , 2006 , 97, 100401	7.4	40
113	Conditional quantum-state engineering using ancillary squeezed-vacuum states. <i>Physical Review A</i> , 2006 , 74,	2.6	20
112	Universal quantum computation with continuous-variable cluster states. <i>Physical Review Letters</i> , 2006 , 97, 110501	7.4	437
111	A model for nonlinear quantum evolution based on time displaced entanglement 2006,		3
110	Modelling photo-detectors in quantum optics. <i>Journal of Modern Optics</i> , 2006 , 53, 1589-1603	1.1	35
109	Measurement of quantum weak values of photon polarization. <i>Physical Review Letters</i> , 2005 , 94, 22040	05 _{7.4}	238
109	Measurement of quantum weak values of photon polarization. <i>Physical Review Letters</i> , 2005 , 94, 22040. Coherent analysis of quantum optical sideband modes. <i>Optics Letters</i> , 2005 , 30, 2481-3	3	238 18
		, ,	
108	Coherent analysis of quantum optical sideband modes. <i>Optics Letters</i> , 2005 , 30, 2481-3	3	18
108	Coherent analysis of quantum optical sideband modes. <i>Optics Letters</i> , 2005 , 30, 2481-3 Optimal photons for quantum-information processing. <i>Physical Review A</i> , 2005 , 72, Continuous-variable quantum-state sharing via quantum disentanglement. <i>Physical Review A</i> , 2005 ,	2.6	18 47
108 107 106	Coherent analysis of quantum optical sideband modes. <i>Optics Letters</i> , 2005 , 30, 2481-3 Optimal photons for quantum-information processing. <i>Physical Review A</i> , 2005 , 72, Continuous-variable quantum-state sharing via quantum disentanglement. <i>Physical Review A</i> , 2005 , 71, Quadrature-phase noise penalties of optically and electro-optically phase-locked lasers. <i>Optics</i>	3 2.6 2.6	18 47 97
108 107 106	Coherent analysis of quantum optical sideband modes. <i>Optics Letters</i> , 2005 , 30, 2481-3 Optimal photons for quantum-information processing. <i>Physical Review A</i> , 2005 , 72, Continuous-variable quantum-state sharing via quantum disentanglement. <i>Physical Review A</i> , 2005 , 71, Quadrature-phase noise penalties of optically and electro-optically phase-locked lasers. <i>Optics Communications</i> , 2005 , 250, 178-190 Adaptive phase measurements in linear optical quantum computation. <i>Journal of Optics B: Quantum</i>	3 2.6 2.6	18 47 97
108 107 106 105	Coherent analysis of quantum optical sideband modes. <i>Optics Letters</i> , 2005 , 30, 2481-3 Optimal photons for quantum-information processing. <i>Physical Review A</i> , 2005 , 72, Continuous-variable quantum-state sharing via quantum disentanglement. <i>Physical Review A</i> , 2005 , 71, Quadrature-phase noise penalties of optically and electro-optically phase-locked lasers. <i>Optics Communications</i> , 2005 , 250, 178-190 Adaptive phase measurements in linear optical quantum computation. <i>Journal of Optics B: Quantum and Semiclassical Optics</i> , 2005 , 7, S245-S249 Coherent-state linear optical quantum computing gates using simplified diagonal superposition	32.62.6	18 47 97 1

(2004-2005)

100	High-fidelity Z-measurement error encoding of optical qubits. <i>Physical Review A</i> , 2005 , 71,	2.6	17
99	Demonstration of the spatial separation of the entangled quantum sidebands of an optical field. <i>Physical Review A</i> , 2005 , 71,	2.6	36
98	No-switching quantum key distribution using broadband modulated coherent light. <i>Physical Review Letters</i> , 2005 , 95, 180503	7.4	157
97	Pryde et al. Reply:. <i>Physical Review Letters</i> , 2005 , 95,	7.4	6
96	Publisher Note: Measurement of Quantum Weak Values of Photon Polarization [Phys. Rev. Lett. 94, 220405 (2005)]. <i>Physical Review Letters</i> , 2005 , 94,	7.4	7
95	Frequency and temporal effects in linear optical quantum computing. <i>Physical Review A</i> , 2005 , 71,	2.6	27
94	Quantum-gate characterization in an extended Hilbert space. <i>Physical Review A</i> , 2005 , 72,	2.6	22
93	Loss-tolerant optical qubits. <i>Physical Review Letters</i> , 2005 , 95, 100501	7.4	106
92	Schrdinger cats and their power for quantum information processing. <i>Journal of Optics B:</i> Quantum and Semiclassical Optics, 2004 , 6, S828-S833		110
91	Deterministic generation of tailored-optical-coherent-state superpositions. <i>Physical Review A</i> , 2004 , 70,	2.6	3
90	Measuring a photonic qubit without destroying it. <i>Physical Review Letters</i> , 2004 , 92, 190402	7.4	105
89	Quantum cryptography without switching. <i>Physical Review Letters</i> , 2004 , 93, 170504	7.4	290
88	Components for optical qubits encoded in sideband modes. <i>Physical Review A</i> , 2004 , 69,	2.6	32
87	Experimental characterization of continuous-variable entanglement. <i>Physical Review A</i> , 2004 , 69,	2.6	67
86	Transmission of optical coherent-state qubits. <i>Physical Review A</i> , 2004 , 70,	2.6	48
85	Optimal cloning for finite distributions of coherent states. <i>Physical Review A</i> , 2004 , 69,	2.6	25
84	Scaling of multiple postselected quantum gates in optics. <i>Physical Review A</i> , 2004 , 70,	2.6	15
83	Utilizing encoding in scalable linear optics quantum computing. <i>Journal of Optics B: Quantum and Semiclassical Optics</i> , 2004 , 6, 533-541		24

82	Conditional production of superpositions of coherent states with inefficient photon detection. <i>Physical Review A</i> , 2004 , 70,	2.6	135
81	Generation of macroscopic superposition states with small nonlinearity. <i>Physical Review A</i> , 2004 , 70,	2.6	68
80	Squeezing from Lasers. Springer Series on Atomic, Optical, and Plasma Physics, 2004, 141-170	0.4	
79	Quantum process tomography of a controlled-NOT gate. <i>Physical Review Letters</i> , 2004 , 93, 080502	7.4	294
78	Continuous variable polarization entanglement, experiment and analysis. <i>Journal of Optics B:</i> Quantum and Semiclassical Optics, 2003 , 5, S467-S478		11
77	Quantum information processing with Schrodinger cats 2003,		2
76	. IEEE Journal of Selected Topics in Quantum Electronics, 2003 , 9, 1519-1532	3.8	25
75	Proposal for a simple quantum-error-correction test gate in linear optics. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2003 , 9, 1495-1497	3.8	2
74	Demonstration of an all-optical quantum controlled-NOT gate. <i>Nature</i> , 2003 , 426, 264-7	50.4	651
72	Optical experiments beyond the quantum limit: Squeezing, entanglement, and teleportation.		
73	Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2003 , 94, 651-665	0.7	4
73		7·4	184
	Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2003, 94, 651-665 Experimental investigation of criteria for continuous variable entanglement. Physical Review Letters		
72	Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2003, 94, 651-665 Experimental investigation of criteria for continuous variable entanglement. Physical Review Letters, 2003, 90, 043601 Experimental investigation of continuous-variable quantum teleportation. Physical Review A, 2003,	7-4	184
72 71	Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2003, 94, 651-665 Experimental investigation of criteria for continuous variable entanglement. Physical Review Letters, 2003, 90, 043601 Experimental investigation of continuous-variable quantum teleportation. Physical Review A, 2003, 67, Comparison of linear optics quantum-computation control-sign gates with ancilla inefficiency and	7.4	184
7 ² 71 70	Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2003, 94, 651-665 Experimental investigation of criteria for continuous variable entanglement. Physical Review Letters, 2003, 90, 043601 Experimental investigation of continuous-variable quantum teleportation. Physical Review A, 2003, 67, Comparison of linear optics quantum-computation control-sign gates with ancilla inefficiency and an improvement to functionality under these conditions. Physical Review A, 2003, 68,	7·4 2.6 2.6	184 239 12
7 ² 7 ¹ 7 ⁰ 69	Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2003, 94, 651-665 Experimental investigation of criteria for continuous variable entanglement. Physical Review Letters, 2003, 90, 043601 Experimental investigation of continuous-variable quantum teleportation. Physical Review A, 2003, 67, Comparison of linear optics quantum-computation control-sign gates with ancilla inefficiency and an improvement to functionality under these conditions. Physical Review A, 2003, 68, Teleportation of continuous-variable polarization states. Physical Review A, 2003, 68,	7·4 2.6 2.6	184 239 12
72 71 70 69 68	Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2003, 94, 651-665 Experimental investigation of criteria for continuous variable entanglement. Physical Review Letters, 2003, 90, 043601 Experimental investigation of continuous-variable quantum teleportation. Physical Review A, 2003, 67, Comparison of linear optics quantum-computation control-sign gates with ancilla inefficiency and an improvement to functionality under these conditions. Physical Review A, 2003, 68, Teleportation of continuous-variable polarization states. Physical Review A, 2003, 68, Photon-added detection. Physical Review A, 2003, 68,	7·4 2.6 2.6 2.6	184 239 12 9

(2001-2003)

64	Quantum computation with optical coherent states. Physical Review A, 2003, 68,	2.6	429
63	Stokes-operator-squeezed continuous-variable polarization states. <i>Physical Review A</i> , 2003 , 67,	2.6	38
62	Quantum Key Distribution with Continuous Variables in Optics 2003 , 295-316		
61	Continuous variable quantum cryptography: beating the 3 dB loss limit. <i>Physical Review Letters</i> , 2002 , 89, 167901	7.4	230
60	Polarization squeezing and continuous-variable polarization entanglement. <i>Physical Review A</i> , 2002 , 65,	2.6	202
59	Coherent superposition states as quantum rulers. <i>Physical Review A</i> , 2002 , 65,	2.6	38
58	Unconditional continuous-variable dense coding. <i>Physical Review A</i> , 2002 , 66,	2.6	34
57	Separating the quantum sidebands of an optical field. <i>Journal of Optics B: Quantum and Semiclassical Optics</i> , 2002 , 4, 123-128		18
56	Quantum computation based on linear optics 2002 , 4917, 1		28
55	Nondeterministic gates for photonic single-rail quantum logic. <i>Physical Review A</i> , 2002 , 66,	2.6	40
54	Teleportation improvement by conditional measurements on the two-mode squeezed vacuum. <i>Physical Review A</i> , 2002 , 65,	2.6	156
53	Linear optical controlled-NOT gate in the coincidence basis. <i>Physical Review A</i> , 2002 , 65,	2.6	206
52	Simple scheme for efficient linear optics quantum gates. <i>Physical Review A</i> , 2001 , 65,	2.6	136
51	Interferometric tests of teleportation. <i>Physical Review A</i> , 2001 , 65,	2.6	7
50	Squeezing more from a quantum nondemolition measurement. <i>Physical Review A</i> , 2001 , 65,	2.6	23
49	Continuous-variable Bell-type correlations from two bright squeezed beams. <i>Physical Review A</i> , 2001 , 65,	2.6	4
48	Teleportation Criteria: Form and Significance 2001 , 187-192		
47	Quantum Noise Transfer Functions: A Practical Tool in Quantum Optics 2001 , 313-332		

46	Franson-type interferometer for intensity fluctuations. <i>Journal of Optics B: Quantum and Semiclassical Optics</i> , 2000 , 2, L31-L34		2
45	Mach-Zehnder interferometer and the teleporter. <i>Physical Review A</i> , 2000 , 61,	2.6	31
44	Security of continuous-variable quantum cryptography. Physical Review A, 2000, 62,	2.6	81
43	Can signal-to-noise be improved by heterodyne detection using an amplitude squeezed local oscillator?. <i>Physical Review Letters</i> , 2000 , 85, 677-8	7.4	2
42	Proposal for the measurement of bell-type correlations from continuous variables. <i>Physical Review Letters</i> , 2000 , 85, 2035-9	7.4	39
41	Sources of phase noise in an injection-locked solid-state laser. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2000 , 17, 280	1.7	5
40	Optimization and transfer of vacuum squeezing from an optical parametric oscillator. <i>Journal of Optics B: Quantum and Semiclassical Optics</i> , 1999 , 1, 469-474		82
39	Enhancement of quantum nondemolition measurements with an electro-optic feed-forward amplifier. <i>Physical Review A</i> , 1999 , 60, 4943-4950	2.6	10
38	Noiseless phase quadrature amplification via an electro-optic feed-forward technique. <i>Physical Review A</i> , 1999 , 60, 529-533	2.6	4
37	Understanding and controlling laser intensity noise. Optical and Quantum Electronics, 1999, 31, 583-598	2.4	10
36	Scheme for the generation of entangled solitons for quantum communication. <i>Journal of Modern Optics</i> , 1999 , 46, 1927-1939	1.1	32
35	Continuous Variable Entanglement Swapping. <i>Physical Review Letters</i> , 1999 , 83, 2095-2099	7.4	119
34	Characterizing teleportation in optics. <i>Journal of Optics B: Quantum and Semiclassical Optics</i> , 1999 , 1, 483-489		28
33	Continuous variable quantum cryptography. <i>Physical Review A</i> , 1999 , 61,	2.6	360
32	Suppression of classic and quantum radiation pressure noise by electro-optic feedback. <i>Optics Letters</i> , 1999 , 24, 259-61	3	30
31	All-optical quantum teleportation. <i>Optics Letters</i> , 1999 , 24, 348-50	3	34
30	Feedback control of the intensity noise of injection locked lasers. <i>Optics Communications</i> , 1998 , 145, 359-366	2	10
29	Feedback control of laser intensity noise. <i>Physical Review A</i> , 1998 , 57, 1286-1294	2.6	18

28	Noiseless independent signal and power amplification. <i>Optics Letters</i> , 1998 , 23, 540-2	3	8
27	Noiseless electro-optic processing of optical signals generated with squeezed light. <i>Optics Express</i> , 1998 , 2, 100-9	3.3	
26	Teleportation with Bright Squeezed Light. <i>Physical Review Letters</i> , 1998 , 81, 5668-5671	7.4	162
25	Squeezed light in a frontal-phase-modulated signal-recycled interferometer. <i>Physical Review A</i> , 1998 , 57, 3898-3912	2.6	16
24	Noiseless Signal Amplification using Positive Electro-Optic Feedforward. <i>Physical Review Letters</i> , 1997 , 79, 1471-1474	7.4	45
23	Low noise amplification and efficient squeezing from rate matched lasers. <i>Physical Review A</i> , 1997 , 55, 2326-2333	2.6	4
22	Robust transmission and reconstruction of fragile optical states. <i>Physical Review A</i> , 1997 , 56, 4187-4192	2 2.6	7
21	Intensity-noise dependence of Nd:YAG lasers on their diode-laser pump source. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1997 , 14, 2936	1.7	32
20	Investigation of polarisation effects in injection locked lasers. <i>Applied Physics B: Lasers and Optics</i> , 1997 , 64, 507-514	1.9	2
19	Active versus passive squeezing by second-harmonic generation. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1996 , 13, 1337	1.7	8
18	Intensity-noise properties of injection-locked lasers. <i>Physical Review A</i> , 1996 , 54, 4370-4382	2.6	48
17	Intensity noise of injection-locked lasers: Quantum theory using a linearized input-output method. <i>Physical Review A</i> , 1996 , 54, 4359-4369	2.6	38
16	Experimental test of modular noise propagation theory for quantum optics. <i>Physical Review A</i> , 1996 , 54, 3400-3404	2.6	11
15	Noiseless amplification of the coherent amplitude of bright squeezed light using a standard laser amplifier. <i>Optics Communications</i> , 1995 , 119, 301-304	2	2
14	Noiseless amplification of the coherent amplitude of bright squeezed light using a standard laser amplifier. <i>Optics Communications</i> , 1995 , 122, 94-98	2	5
13	Numerical modeling of evanescent-wave atom optics. <i>Physical Review A</i> , 1995 , 52, 4741-4746	2.6	11
12	Progress in the search for the optimum light source: squeezing experiments with a frequency doubler. Quantum and Semiclassical Optics: Journal of the European Optical Society Part B, 1995, 7, 715-7	726	2
11	Squeezed light from second-harmonic generation: experiment versus theory. <i>Optics Letters</i> , 1995 , 20, 1316-8	3	26

10	Retrieving squeezing from classically noisy light in second-harmonic generation. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1995 , 12, 833	1.7	4
9	Bistability in a four-level laser with a resonant pump mode. <i>Physical Review A</i> , 1994 , 49, 4979-4984	2.6	6
8	Squeezing from conventionally pumped lasers; a rate equation approach. <i>Journal of the European Optical Society Part B: Quantum Optics</i> , 1993 , 5, 113-119		4
7	High-power quenching resulting from pump excited-state absorption in an erbium-doped fiber laser. <i>Optics Letters</i> , 1993 , 18, 1162	3	3
6	Squeezed light from conventionally pumped lasers with nonuniform spatial structure. <i>Physical Review A</i> , 1992 , 46, 2803-2810	2.6	9
5	Producing squeezed light from conventionally pumped lasers. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1992 , 9, 1895	1.7	4
4	Squeezed light from a coherently pumped four-level laser. <i>Physical Review A</i> , 1991 , 44, 7809-7814	2.6	47
3	Squeezed light from conventionally pumped multilevel lasers. <i>Optics Letters</i> , 1991 , 16, 1113-5	3	44
2	Maximum entanglement of formation for a two-mode Gaussian state over passive operations		O
1	Biased EPR entanglement and its application to teleportation		10