Xin-mei Hou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/751230/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect and mechanism of nano-Ca10(PO4)6(OH)2 additive on compressive strength of calcium aluminate cement at high temperature. Journal of Iron and Steel Research International, 2022, 29, 1063-1072.	2.8	3
2	Mild fabrication of SiC/C nanosheets with prolonged cycling stability as supercapacitor. Journal of Materials Science and Technology, 2022, 110, 178-186.	10.7	39
3	Preparation of 2H/3C–SiC heterojunction nanowires from molten salt method with blue shift photoluminescence property. Ceramics International, 2022, 48, 12971-12978.	4.8	13
4	Computational Discovery of the Qualitative Electronegativity–Wettability Relationship in High-Temperature Ceramics-Supported TiAl Alloys. Journal of Physical Chemistry C, 2022, 126, 2207-2213.	3.1	6
5	Effect of Sn doping concentration on the oxidation of Al-containing MAX phase (Ti3AlC2) combining simulation with experiment. Fundamental Research, 2022, 2, 114-122.	3.3	19
6	Regulating the phase stability and bandgap of quasi-2D Dion–Jacobson CsSnI ₃ perovskite <i>via</i> intercalating organic cations. Journal of Materials Chemistry A, 2022, 10, 3996-4005.	10.3	8
7	Ti ₃ C ₂ T _{<i>x</i>} (MXene)/Pt nanoparticle electrode for the accurate detection of DA coexisting with AA and UA. Dalton Transactions, 2022, 51, 4549-4559.	3.3	33
8	Performance of BaZrO3/Y2O3 dual-phase refractory applied to TiAl alloy melting. Ceramics International, 2022, 48, 20158-20167.	4.8	7
9	New design concept for stable α-silicon nitride based on the initial oxidation evolution at the atomic and molecular levels. Journal of Materials Science and Technology, 2022, 122, 156-164.	10.7	7
10	Ultra-Stable and Durable Piezoelectric Nanogenerator with All-Weather Service Capability Based on NÂDoped 4H-SiC Nanohole Arrays. Nano-Micro Letters, 2022, 14, 30.	27.0	57
11	Preparation of Al4SiC4 with higher aspect ratio by a novel two-step method. Ceramics International, 2022, 48, 23908-23913.	4.8	5
12	Progress in cognition of gas-solid interface reaction for non-oxide ceramics at high temperature. Critical Reviews in Solid State and Materials Sciences, 2021, 46, 218-250.	12.3	38
13	The oxidation and thermal stability of two-dimensional transition metal carbides and/or carbonitrides (MXenes) and the improvement based on their surface state. Inorganic Chemistry Frontiers, 2021, 8, 2164-2182.	6.0	56
14	Oxidation mechanism of MAX phases (Ti3AlC2 powders) with and without Sn doping. Corrosion Science, 2021, 180, 109197.	6.6	32
15	Piezoelectric Nanogenerator Based on In Situ Growth Allâ€Inorganic CsPbBr ₃ Perovskite Nanocrystals in PVDF Fibers with Longâ€Term Stability. Advanced Functional Materials, 2021, 31, 2011073.	14.9	95
16	Preparation of Zr ⁴⁺ doped calcium hexaaluminate with improved slag penetration resistance. Journal of the American Ceramic Society, 2021, 104, 4854-4866.	3.8	61
17	Piezoelectric nanogenerators with high performance against harsh conditions based on tunable N doped 4H-SiC nanowire arrays. Nano Energy, 2021, 83, 105826.	16.0	56
18	Firstâ€Principles Optimization of Outâ€ofâ€Plane Charge Transport in Dion–Jacobson CsPbI ₃ Perovskites with Ï€â€Conjugated Aromatic Spacers. Advanced Functional Materials, 2021, 31, 2102330.	14.9	51

Хім-меі Нои

#	Article	IF	CITATIONS
19	Review of electrochemical degradation of phenolic compounds. International Journal of Minerals, Metallurgy and Materials, 2021, 28, 1413-1428.	4.9	9
20	Linearly Tailored Work Function of Orthorhombic CsSnI ₃ Perovskites. ACS Energy Letters, 2021, 6, 2328-2335.	17.4	11
21	Tunable fabrication of single-crystalline CsPbI3 nanobelts and their application as photodetectors. International Journal of Minerals, Metallurgy and Materials, 2021, 28, 1030-1037.	4.9	26
22	Effect of temperature on the initial reaction behavior of MAB phases (MoAlB powders) at 700–1000°C in air. Ceramics International, 2021, 47, 20700-20705.	4.8	19
23	In situ reduced MXene/AuNPs composite toward enhanced charging/discharging and specific capacitance. Journal of Advanced Ceramics, 2021, 10, 1061-1071.	17.4	78
24	Neodymium-decorated graphene as an efficient electrocatalyst for hydrogen production. Nanoscale, 2021, 13, 15471-15480.	5.6	6
25	Fabrication of Pd/CeO ₂ nanocubes as highly efficient catalysts for degradation of formaldehyde at room temperature. Catalysis Science and Technology, 2021, 11, 6732-6741.	4.1	12
26	Stabilizing orthorhombic CsSnI ₃ perovskites with optimized electronic properties by surface ligands with inter-molecular hydrogen bond. Journal of Materials Chemistry A, 2021, 9, 24641-24649.	10.3	9
27	New approach to evaluate the influence of compressive stress on the oxidation of non-oxide ceramics. Ceramics International, 2021, 48, 2317-2317.	4.8	7
28	Understanding of Au-CeO2 interface and its role in catalytic oxidation of formaldehyde. Applied Catalysis B: Environmental, 2020, 260, 118138.	20.2	88
29	Recent progress in SiC nanowires as electromagnetic microwaves absorbing materials. Journal of Alloys and Compounds, 2020, 815, 152388.	5.5	96
30	Construction of layered h-BN/TiO2 hetero-structure and probing of the synergetic photocatalytic effect. Science China Materials, 2020, 63, 276-287.	6.3	39
31	A wide range photoluminescence intensity-based temperature sensor developed with BN quantum dots and the photoluminescence mechanism. Sensors and Actuators B: Chemical, 2020, 304, 127353.	7.8	16
32	Electrostatic interaction assisted synthesis of a CdS/BCN heterostructure with enhanced photocatalytic effects. Journal of Materials Chemistry C, 2020, 8, 1803-1810.	5.5	48
33	Tunable fabrication and photoluminescence property of SiC nanowires with different microstructures. Applied Surface Science, 2020, 506, 144979.	6.1	17
34	Ab initio calculation of the evolution of [SiN _{4â€} <i>_n</i> O <i>_n</i>] tetrahedron during <i>β</i> â€si ₃ N ₄ (0001) surface oxidation. Journal of the American Ceramic Society, 2020, 103, 2808-2816.	3.8	4
35	Organic intercalation engineering of quasi-2D Dion–Jacobson α-CsPbI ₃ perovskites. Materials Horizons, 2020, 7, 1042-1050.	12.2	55
36	Characterization and mechanism of early hydration of calcium aluminate cement with anatase-TiO2 nanospheres additive. Construction and Building Materials, 2020, 261, 119922.	7.2	18

#	Article	IF	CITATIONS
37	Enhancing the Stability of Orthorhombic CsSnI ₃ Perovskite <i>via</i> Oriented Ï€-Conjugated Ligand Passivation. ACS Applied Materials & Interfaces, 2020, 12, 34462-34469.	8.0	26
38	Effect of incorporation of nitrogen on calcium hexaaluminate. Journal of the European Ceramic Society, 2020, 40, 6155-6161.	5.7	38
39	Supercapacitor electrode based on few-layer h-BNNSs/rGO composite for wide-temperature-range operation with robust stable cycling performance. International Journal of Minerals, Metallurgy and Materials, 2020, 27, 220-231.	4.9	24
40	High-performance chromite by structure stabilization treatment. Journal of Iron and Steel Research International, 2020, 27, 169-179.	2.8	6
41	Effectively controlling the crystal growth of Cr ₂ O ₃ using SiO ₂ as the second phase. Journal of the American Ceramic Society, 2019, 102, 2187-2194.	3.8	7
42	Electrochemical detection mechanism of dopamine and uric acid on titanium nitride-reduced graphene oxide composite with and without ascorbic acid. Sensors and Actuators B: Chemical, 2019, 298, 126872.	7.8	92
43	A novel two-stage synthesis for 3C–SiC nanowires by carbothermic reduction and their photoluminescence properties. Journal of Materials Science, 2019, 54, 12450-12462.	3.7	18
44	Individual and Simultaneous Voltammetric Determination of Cd(II), Cu(II) and Pb(II) Applying Amino Functionalized Fe ₃ O ₄ @Carbon Microspheres Modified Electrode. Electroanalysis, 2019, 31, 1448-1457.	2.9	24
45	Bandgap alignment of α-CsPbI3 perovskites with synergistically enhanced stability and optical performance via B-site minor doping. Nano Energy, 2019, 61, 389-396.	16.0	67
46	Electron-beam irradiation-hard metal-halide perovskite nanocrystals. Journal of Materials Chemistry A, 2019, 7, 10912-10917.	10.3	30
47	Adsorption and Reaction of Water on the AlN(0001) Surface from First Principles. Journal of Physical Chemistry C, 2019, 123, 5460-5468.	3.1	17
48	Simultaneous determination of Cd(II) and Pb(II) using electrode modified by FeAl2O4-AlOOH-reduced graphene oxide hybrids. Ionics, 2019, 25, 2351-2360.	2.4	9
49	Highâ€Performance SiC Nanobelt Photodetectors with Longâ€Term Stability Against 300 °C up to 180 Days. Advanced Functional Materials, 2019, 29, 1806250.	14.9	54
50	Preparation of high-purity α-Si3N4 nano-powder by precursor-carbothermal reduction and nitridation. Ceramics International, 2019, 45, 6335-6339.	4.8	10
51	Preparation, growth mechanism and slag resistance behavior of ternary Ca 2 Mg 2 Al 28 O 46 (C 2 M 2 A) Tj ETQ	q1_10.78	43]4 rgBT /(
52	Efficient synergy of photocatalysis and adsorption of hexavalent chromium and rhodamine B over Al4SiC4/rGO hybrid photocatalyst under visible-light irradiation. Applied Catalysis B: Environmental, 2019, 241, 548-560.	20.2	79
53	Formation mechanism of elongated β–Si3N4 crystals in Fe–Si3N4 composite via flash combustion. Ceramics International, 2018, 44, 9395-9400.	4.8	13
54	Formation mechanism of large size plate-like Al ₄ SiC ₄ grains by a carbothermal reduction method. CrystEngComm, 2018, 20, 1399-1404.	2.6	7

#	Article	IF	CITATIONS
55	Preparation of nano-TiO2/diatomite-based porous ceramics and their photocatalytic kinetics for formaldehyde degradation. International Journal of Minerals, Metallurgy and Materials, 2018, 25, 73-79.	4.9	32
56	General Strategy for Rapid Production of Low-Dimensional All-Inorganic CsPbBr ₃ Perovskite Nanocrystals with Controlled Dimensionalities and Sizes. Inorganic Chemistry, 2018, 57, 1598-1603.	4.0	48
57	Superior Photodetectors Based on All-Inorganic Perovskite CsPbI ₃ Nanorods with Ultrafast Response and High Stability. ACS Nano, 2018, 12, 1611-1617.	14.6	210
58	Preparation of flake hexagonal BN and its application in electrochemical detection of ascorbic acid, dopamine and uric acid. Sensors and Actuators B: Chemical, 2018, 260, 346-356.	7.8	112
59	Facile fabrication of three-dimensional interconnected nanoporous N-TiO 2 for efficient photoelectrochemical water splitting. Journal of Materials Science and Technology, 2018, 34, 955-960.	10.7	50
60	Improvement of thermal shock performance by residual stress field toughening in periclase-hercynite refractories. Ceramics International, 2018, 44, 24-31.	4.8	10
61	The effect of nano-γAl 2 O 3 additive on early hydration of calcium aluminate cement. Construction and Building Materials, 2018, 158, 755-760.	7.2	43
62	Reply to "Comment on â€~Superior Photodetectors Based on All-Inorganic Perovskite CsPbl ₃ Nanorods with Ultrafast Response and High Stability'― ACS Nano, 2018, 12, 10571-10571.	14.6	2
63	Mass production of Mn ²⁺ -doped CsPbCl ₃ perovskite nanocrystals with high quality and enhanced optical performance. Inorganic Chemistry Frontiers, 2018, 5, 2641-2647.	6.0	30
64	Reaction and formation mechanism of Fe-Si3N4 composite prepared by flash combustion synthesis. Ceramics International, 2018, 44, 22777-22783.	4.8	5
65	Effect of Temperature on the Initial Oxidation Behavior and Kinetics of 5Cr Ferritic Steel in Air. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 5169-5179.	2.2	7
66	Characterization of Flake Boron Nitride Prepared from the Low Temperature Combustion Synthesized Precursor and Its Application for Dye Adsorption. Coatings, 2018, 8, 214.	2.6	58
67	Wurtzite AlN(0001) Surface Oxidation: Hints from Ab Initio Calculations. ACS Applied Materials & Interfaces, 2018, 10, 30811-30818.	8.0	30
68	Boron doping induced thermal conductivity enhancement of water-based 3C-Si(B)C nanofluids. Nanotechnology, 2018, 29, 355702.	2.6	2
69	Tunable preparation of chrysanthemum-like titanium nitride as flexible electrode materials for ultrafast-charging/discharging and excellent stable supercapacitors. Journal of Power Sources, 2018, 396, 319-326.	7.8	54
70	Corrosion behavior of porous silicon nitride ceramics in different atmospheres. Ceramics International, 2017, 43, 4344-4352.	4.8	24
71	Synergizing the multiple plasmon resonance coupling and quantum effects to obtain enhanced SERS and PEC performance simultaneously on a noble metal–semiconductor substrate. Nanoscale, 2017, 9, 2376-2384.	5.6	33
72	Fabrication and oxidation behavior of Al ₄ SiC ₄ powders. Journal of the American Ceramic Society, 2017, 100, 3145-3154.	3.8	31

#	Article	IF	CITATIONS
73	Molten salt-enhanced production of hydrogen by using skimmed hot dross from aluminum remelting at high temperature. International Journal of Hydrogen Energy, 2017, 42, 12956-12966.	7.1	13
74	The effective determination of Cd(<scp>ii</scp>) and Pb(<scp>ii</scp>) simultaneously based on an aluminum silicon carbide-reduced graphene oxide nanocomposite electrode. Analyst, The, 2017, 142, 2741-2747.	3.5	28
75	Characterization and properties of rapid fabrication of network porous Si 3 N 4 ceramics. Journal of Alloys and Compounds, 2017, 709, 717-723.	5.5	18
76	Improved microwave absorption performance of modified SiC in the 2–18 GHz frequency range. CrystEngComm, 2017, 19, 519-527.	2.6	63
77	Morphological Evolution of Low-Grade Silica Fume at Elevated Temperature. High Temperature Materials and Processes, 2017, 36, 607-613.	1.4	7
78	Simultaneously electrochemical detection of uric acid and ascorbic acid using glassy carbon electrode modified with chrysanthemum-like titanium nitride. Journal of Electroanalytical Chemistry, 2017, 803, 11-18.	3.8	44
79	Cadmium sulfide with tunable morphologies: Preparation and visible-light driven photocatalytic performance. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 93, 116-123.	2.7	45
80	Morphological evolution of porous silicon nitride ceramics at initial stage when exposed to water vapor. Journal of Alloys and Compounds, 2017, 725, 840-847.	5.5	23
81	Comparison of the Reaction Behavior of Hexagonal Silicon Carbide Powder in Different Atmospheres. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 5122-5131.	2.2	19
82	Microwave absorption properties of SiC@SiO2@Fe3O4 hybrids in the 2–18 GHz range. International Journal of Minerals, Metallurgy and Materials, 2017, 24, 804-813.	4.9	34
83	Selective Determination of Copper (II) Based on Aluminum Silicon Carbide Nanoparticles Modified Glassy Carbon Electrode by Square Wave Stripping Voltammetry. Electroanalysis, 2017, 29, 2224-2231.	2.9	7
84	TiN @NiCo2O4 coaxial nanowires as supercapacitor electrode materials with improved electrochemical and wide-temperature performance. Journal of Alloys and Compounds, 2017, 692, 605-613.	5.5	37
85	Synthesis of Al4SiC4 powders via carbothermic reduction: Reaction and grain growth mechanisms. Journal of Advanced Ceramics, 2017, 6, 351-359.	17.4	22
86	The morphological evolution of the oxide products of Si ₃ N ₄ /Al ₂ O ₃ composite refractory under different oxidizing conditions. Journal of the Ceramic Society of Japan, 2017, 125, 661-669.	1.1	2
87	Pt-Co Alloys-Loaded Cubic SiC Electrode with Improved Photoelectrocatalysis Property. Materials, 2017, 10, 955.	2.9	8
88	Oxidation Behavior and Mechanism of Al4SiC4 in MgO-C-Al4SiC4 System. Coatings, 2017, 7, 85.	2.6	10
89	New Perspectives on the Gas–Solid Reaction of αâ€Si ₃ N ₄ Powder in Wet Air at High Temperature. Journal of the American Ceramic Society, 2016, 99, 2699-2705.	3.8	22
90	Some New Perspective on the Reaction Mechanism of MgO–SiO ₂ –H ₂ O System. International Journal of Applied Ceramic Technology, 2016, 13, 1164-1172.	2.1	18

#	Article	IF	CITATIONS
91	Evolution of aluminum hydroxides at the initial stage of aluminum nitride powder hydrolysis. Ceramics International, 2016, 42, 11429-11434.	4.8	20
92	An amperometric glucose enzyme biosensor based on porous hexagonal boron nitride whiskers decorated with Pt nanoparticles. RSC Advances, 2016, 6, 92748-92753.	3.6	16
93	Enhancing photoluminescence properties of SiC/SiO ₂ coaxial nanocables by making oxygen vacancies. Dalton Transactions, 2016, 45, 13503-13508.	3.3	32
94	Improvement in surface-enhanced Raman spectroscopy from cubic SiC semiconductor nanowhiskers by adjustment of energy levels. Physical Chemistry Chemical Physics, 2016, 18, 27572-27576.	2.8	9
95	Thermal and transport properties of La2â^'xNdxMo2O9. Journal of Rare Earths, 2016, 34, 1024-1031.	4.8	2
96	Bare and boron-doped cubic silicon carbide nanowires for electrochemical detection of nitrite sensitively. Scientific Reports, 2016, 6, 24872.	3.3	34
97	Single crystalline 3C-SiC whiskers used for electrochemical detection of nitrite under neutral condition. Ionics, 2016, 22, 1493-1500.	2.4	34
98	SiC Nanowires with Tunable Hydrophobicity/Hydrophilicity and Their Application as Nanofluids. Langmuir, 2016, 32, 5909-5916.	3.5	23
99	A titanium nitride nanotube array for potentiometric sensing of pH. Analyst, The, 2016, 141, 1693-1699.	3.5	8
100	Isothermal oxidation mechanism of a newly developed Nb–Ti–V–Cr–Al–W–Mo–Hf alloy at 800– °C. International Journal of Refractory Metals and Hard Materials, 2016, 54, 322-329.	1200 3.8	48
101	Preparation of hexagonal BN whiskers synthesized at low temperature and their application in fabricating an electrochemical nitrite sensor. RSC Advances, 2016, 6, 27767-27774.	3.6	31
102	Controllable Preparation of Al ₂ O ₃ â€MgO·Al ₂ O ₃ aO·6Al ₂ O _{3(<scp>AMC</scp>) Composite with Improved Slag Penetration Resistance. International Journal of Applied Ceramic Technology, 2016, 13, 33-40}	ub> 2.1	16
103	Phase Equilibria Studies in the SiO2-K2O-CaO System. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2016, 47, 1690-1696.	2.1	17
104	The Reaction Behavior of AlN Powder in Wet Air Between 1573ÂK and 1773ÂK. Jom, 2016, 68, 675-681.	1.9	4
105	Fabrication and characterization of ultra light SiC whiskers decorated by RuO ₂ nanoparticles as hybrid supercapacitors. RSC Advances, 2016, 6, 19626-19631.	3.6	5
106	Porous hexagonal boron nitride whiskers fabricated at low temperature for effective removal of organic pollutants from water. Ceramics International, 2016, 42, 8754-8762.	4.8	53
107	Effect of SiO ₂ addition on the synthesis of hercynite with high purity. Journal of the Ceramic Society of Japan, 2015, 123, 595-600.	1.1	5
108	Effect of TiO ₂ Addition on Crystallization Characteristics of CaO-Al ₂ O ₃ -based Mould Fluxes for High Al Steel Casting. ISIJ International, 2015, 55, 830-836.	1.4	33

#	Article	IF	CITATIONS
109	Characterization and properties of silicon carbide fibers with self-standing membrane structure. Journal of Alloys and Compounds, 2015, 649, 135-141.	5.5	8
110	Isothermal oxidation mechanism of Nb–Ti–V–Al–Zr alloy at 700–1200°C: Diffusion and interface reaction. Corrosion Science, 2015, 96, 186-195.	6.6	60
111	Fabrication of Ordered Mullite Nanowhisker Array with Surface Enhanced Raman Scattering Effect. Scientific Reports, 2015, 5, 9690.	3.3	10
112	Template free synthesis of highly ordered mullite nanowhiskers with exceptional photoluminescence. Ceramics International, 2015, 41, 9560-9566.	4.8	13
113	The Reaction Behavior of α-Si3N4 Powder at 1100–1500°C Under Different Oxidizing Conditions. Oxidation of Metals, 2015, 84, 169-184.	2.1	8
114	The Effect of Water Vapor and Temperature on the Reaction Behavior of AlN Powder at 1273ÂK to 1423ÂK (1000°C to 1150°C). Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 1621-1627.	2.2	6
115	B-doped 3C-SiC nanowires with a finned microstructure for efficient visible light-driven photocatalytic hydrogen production. Nanoscale, 2015, 7, 8955-8961.	5.6	80
116	Preparation of TiO _x N _y /TiN composites for photocatalytic hydrogen evolution under visible light. Physical Chemistry Chemical Physics, 2015, 17, 28782-28788.	2.8	47
117	Large scale fabrication of dumbbell-shaped biomimetic SiC/SiO ₂ fibers. CrystEngComm, 2015, 17, 9318-9322.	2.6	12
118	Characterization of modified SiC@SiO ₂ nanocables/MnO ₂ and their potential application as hybrid electrodes for supercapacitors. Dalton Transactions, 2015, 44, 19974-19982.	3.3	22
119	Molten salt synthesis of mullite nanowhiskers using different silica sources. International Journal of Minerals, Metallurgy and Materials, 2015, 22, 884-891.	4.9	13
120	Morphology characterization of periclase–hercynite refractories by reaction sintering. International Journal of Minerals, Metallurgy and Materials, 2015, 22, 1219-1224.	4.9	14
121	Study on CO2 gasification properties and kinetics of biomass chars and anthracite char. Bioresource Technology, 2015, 177, 66-73.	9.6	161
122	Morphology-controlled Synthesis of Hexagonal AlN Whiskers by Direct Nitridation of Aluminum and Alumina Mixture. High Temperature Materials and Processes, 2014, 33, 385-389.	1.4	2
123	Synthesis parameter dependence of the electrochemical performance of solvothermally synthesized Li4Ti5O12. Materials for Renewable and Sustainable Energy, 2014, 3, 1.	3.6	7
124	Synthesis of titanium nitride nanopowder at low temperature from the combustion synthesized precursor and the thermal stability. Journal of Alloys and Compounds, 2014, 615, 838-842.	5.5	17
125	A Facile Synthesis of a Three-Dimensional Flexible 3C-SiC Sponge and Its Wettability. Crystal Growth and Design, 2014, 14, 4624-4630.	3.0	48
126	Dissolution and diffusion of TiO2 in the CaO-Al2O3-SiO2 slag. International Journal of Minerals, Metallurgy and Materials, 2014, 21, 345-352.	4.9	13

#	Article	IF	CITATIONS
127	Preparation and properties of hexagonal boron nitride fibers used as high temperature membrane filter. Materials Research Bulletin, 2014, 49, 39-43.	5.2	35
128	Oxidation kinetics of TiN-containing composites. Ceramics International, 2014, 40, 961-966.	4.8	10
129	Facile synthesis of hexagonal boron nitride fibers with uniform morphology. Ceramics International, 2013, 39, 6427-6431.	4.8	29
130	Preparation and photo-catalytic activity of TiO2-coated medical stone-based porous ceramics. International Journal of Minerals, Metallurgy and Materials, 2013, 20, 593-597.	4.9	7
131	Quantitative investigation of oxidation behavior of boron carbide powders in air. Journal of Alloys and Compounds, 2013, 573, 182-186.	5.5	18
132	Effect of Water-Vapor Content on Reaction Rate of Hexagonal BN Powder at 1273ÂK. High Temperature Materials and Processes, 2013, 32, 275-280.	1.4	3
133	Kinetics of Reduction of Titano-magnetite Powder by H2. High Temperature Materials and Processes, 2013, 32, 229-236.	1.4	17
134	The Reaction Mechanism and Kinetics of αâ€ <scp>BN</scp> Powder in Wet Air at 1273ÂK. Journal of the American Ceramic Society, 2013, 96, 1877-1882.	3.8	20
135	Single crystalline Î ² -SiAlON nanowhiskers: preparation and enhanced properties at high temperature. Dalton Transactions, 2012, 41, 7127.	3.3	15
136	A new approach to interpreting the parabolic and non-parabolic oxidation behaviour of hot-pressed β-SiAlON ceramics. Corrosion Science, 2012, 58, 278-283.	6.6	15
137	Reaction mechanisms for 0.5Li2MnO3·0.5LiMn0.5Ni0.5O2 precursor prepared by low-heating solid state reaction. International Journal of Minerals, Metallurgy and Materials, 2012, 19, 856-862.	4.9	8
138	Morphological development and oxidation of elongated Î ² -SiAlON material. Corrosion Science, 2011, 53, 2051-2057.	6.6	16
139	Investigation of the effects of temperature and oxygen partial pressure on oxidation of zirconium carbide using different kinetics models. Journal of Alloys and Compounds, 2011, 509, 2395-2400.	5.5	13
140	Kinetics of Thermal Oxidation of Titanium Nitride Powder at Different Oxidizing Atmospheres. Journal of the American Ceramic Society, 2011, 94, 570-575.	3.8	14
141	Thermal oxidation of SiAlON powders synthesized from coal gangue. International Journal of Minerals, Metallurgy and Materials, 2011, 18, 77-82.	4.9	15
142	Morphological development and oxidation mechanisms of aluminum nitride whiskers. Journal of Solid State Chemistry, 2010, 183, 963-968.	2.9	10
143	Kinetics of non-isothermal oxidation of AlN powder. Journal of the European Ceramic Society, 2010, 30, 629-633.	5.7	15
144	The oxidation kinetics of multi-walled carbon nanotubes. Corrosion Science, 2010, 52, 1771-1776.	6.6	16

#	Article	IF	CITATIONS
145	The Model for Oxidation Kinetics of Titanium Nitride Coatings. International Journal of Applied Ceramic Technology, 2010, 7, 248-255.	2.1	11
146	A simple model for the oxidation of carbon-containing composites. Corrosion Science, 2010, 52, 1093-1097.	6.6	48
147	Kinetics of Highâ€Temperature Oxidation of Inorganic Nonmetallic Materials. Journal of the American Ceramic Society, 2009, 92, 585-594.	3.8	61
148	A new treatment for kinetics of oxidation of silicon carbide. Ceramics International, 2009, 35, 603-607.	4.8	29
149	Corrosion resistance of AlN–SiC–TiB2 composite in air. Composites Science and Technology, 2009, 69, 2527-2531.	7.8	6
150	Influence of particle size distribution on oxidation behavior of SiC powder. Journal of Alloys and Compounds, 2009, 477, 166-170.	5.5	24
151	Quantitative investigation of the oxidation kinetics of magnesia/carbon composite. Journal of the Ceramic Society of Japan, 2009, 117, 1293-1296.	1.1	1
152	A theoretical analysis for oxidation of titanium carbide. Journal of Materials Science, 2008, 43, 6193-6199.	3.7	7
153	A Comparison of Oxidation Kinetics of O′â€SiAlON and βâ€SiAlON Powders Synthesized from Bauxite. International Journal of Applied Ceramic Technology, 2008, 5, 529-536.	2.1	10
154	Comparison of the Diffusion Control Models for Isothermal Oxidation of SiAlON Powders. Journal of the American Ceramic Society, 2008, 91, 3315-3319.	3.8	20
155	A new measurement and treatment for kinetics of isothermal oxidation of Si3N4. Journal of Alloys and Compounds, 2008, 459, 123-129.	5.5	42
156	Oxidation kinetics of aluminum nitride at different oxidizing atmosphere. Journal of Alloys and Compounds, 2008, 465, 90-96.	5.5	31
157	Model of oxidation of SiC microparticles at high temperature. Corrosion Science, 2008, 50, 2367-2371.	6.6	36
158	A new kinetic treatment of the oxidation of \hat{l}^2 -SiAlON powder. International Journal of Materials Research, 2008, 99, 1346-1351.	0.3	1
159	Fabrication of Semiconductor with Modified Microstructure for Efficient Photocatalytic Hydrogen Evolution Under Visible Light. , 0, , .		0