
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7512250/publications.pdf Version: 2024-02-01

SEDDANO ID

#	Article	IF	CITATIONS
1	Surge limit definition in a specific test bench for the characterization of automotive turbochargers. Experimental Thermal and Fluid Science, 2006, 30, 449-462.	1.5	116
2	Experiments and modelling of surge in small centrifugal compressor for automotive engines. Experimental Thermal and Fluid Science, 2008, 32, 818-826.	1.5	114
3	A model of turbocharger radial turbines appropriate to be used in zero- and one-dimensional gas dynamics codes for internal combustion engines modelling. Energy Conversion and Management, 2008, 49, 3729-3745.	4.4	88
4	Impact of two-stage turbocharging architectures on pumping losses of automotive engines based on an analytical model. Energy Conversion and Management, 2010, 51, 1958-1969.	4.4	84
5	A fluid dynamic model for unsteady compressible flow in wall-flow diesel particulate filters. Energy, 2011, 36, 671-684.	4.5	75
6	Methodology to design a bottoming Rankine cycle, as a waste energy recovering system in vehicles. Study in a HDD engine. Applied Energy, 2013, 104, 758-771.	5.1	74
7	Theoretical and experimental study of mechanical losses inÂautomotive turbochargers. Energy, 2013, 55, 888-898.	4.5	72
8	Potential of flow pre-whirl at the compressor inlet of automotive engine turbochargers to enlarge surge margin and overcome packaging limitations. International Journal of Heat and Fluid Flow, 2007, 28, 374-387.	1.1	69
9	Combustion simulation of turbocharger HSDI Diesel engines during transient operation using neural networks. Applied Thermal Engineering, 2005, 25, 877-898.	3.0	60
10	Potential of Atkinson cycle combined with EGR for pollutant control in a HD diesel engine. Energy Conversion and Management, 2009, 50, 174-183.	4.4	60
11	Filtration modelling in wall-flow particulate filters of low soot penetration thickness. Energy, 2016, 112, 883-898.	4.5	60
12	Importance of Heat Transfer Phenomena in Small Turbochargers for Passenger Car Applications. SAE International Journal of Engines, 0, 6, 716-728.	0.4	57
13	A physically based methodology to extrapolate performance maps of radial turbines. Energy Conversion and Management, 2012, 55, 149-163.	4.4	56
14	Turbocharger heat transfer and mechanical losses influence in predicting engines performance by using one-dimensional simulation codes. Energy, 2015, 86, 204-218.	4.5	55
15	Design of an exhaust manifold to improve transient performance of a high-speed turbocharged diesel engine. Experimental Thermal and Fluid Science, 2004, 28, 863-875.	1.5	53
16	Pre-DPF water injection technique for pressure drop control in loaded wall-flow diesel particulate filters. Applied Energy, 2015, 140, 234-245.	5.1	52
17	Procedure for engine transient cycle emissions testing in real time. Experimental Thermal and Fluid Science, 2006, 30, 485-496.	1.5	51
18	Modelling of turbocharged diesel engines in transient operation. Part 2: Wave action models for calculating the transient operation in a high speed direct injection engine. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2002, 216, 479-493.	1.1	49

SERRANO JR

#	Article	IF	CITATIONS
19	Packed bed of spherical particles approach for pressure drop prediction in wall-flow DPFs (diesel) Tj ETQq1 1 0.784	314 rgBT	/Qverlock]
20	Experimental–theoretical methodology for determination of inertial pressure drop distribution and pore structure properties in wall-flow diesel particulate filters (DPFs). Energy, 2011, 36, 6731-6744.	4.5	48
21	Modelling of turbocharged diesel engines in transient operation. Part 1: Insight into the relevant physical phenomena. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2002, 216, 431-441.	1.1	47
22	Model of the expansion process for R245fa in an Organic Rankine Cycle (ORC). Applied Thermal Engineering, 2012, 40, 248-257.	3.0	47
23	Methodology for characterisation and simulation of turbocharged diesel engines combustion during transient operation. Part 1: Data acquisition and post-processing. Applied Thermal Engineering, 2009, 29, 142-149.	3.0	46
24	Heat transfer modelling in honeycomb wall-flow diesel particulate filters. Energy, 2012, 43, 201-213.	4.5	45
25	HD Diesel engine equipped with a bottoming Rankine cycle as a waste heat recovery system. Part 2: Evaluation of alternative solutions. Applied Thermal Engineering, 2012, 36, 279-287.	3.0	45
26	An experimental procedure to determine heat transfer properties of turbochargers. Measurement Science and Technology, 2010, 21, 035109.	1.4	44
27	Description of a Semi-Independent Time Discretization Methodology for a One-Dimensional Gas Dynamics Model. Journal of Engineering for Gas Turbines and Power, 2009, 131, .	0.5	42
28	Development and validation of a radial turbine efficiency and mass flow model at design and off-design conditions. Energy Conversion and Management, 2016, 128, 281-293.	4.4	42
29	Why the Development of Internal Combustion Engines Is Still Necessary to Fight against Global Climate Change from the Perspective of Transportation. Applied Sciences (Switzerland), 2019, 9, 4597.	1.3	42
30	Description of a heat transfer model suitable to calculate transient processes of turbocharged diesel engines with one-dimensional gas-dynamic codes. Applied Thermal Engineering, 2006, 26, 66-76.	3.0	41
31	Methodology for characterisation and simulation of turbocharged diesel engines combustion during transient operation. Part 2: Phenomenological combustion simulation. Applied Thermal Engineering, 2009, 29, 150-158.	3.0	41
32	A study on the internal convection in small turbochargers. Proposal ofÂheat transfer convective coefficients. Applied Thermal Engineering, 2015, 89, 587-599.	3.0	41
33	Analysis of the capabilities of a two-stage turbocharging system to fulfil the US2007 anti-pollution directive for heavy duty diesel engines. International Journal of Automotive Technology, 2008, 9, 277-288.	0.7	38
34	Imagining the Future of the Internal Combustion Engine for Ground Transport in the Current Context. Applied Sciences (Switzerland), 2017, 7, 1001.	1.3	36
35	Analysis of numerical methods to solve one-dimensional fluid-dynamic governing equations under impulsive flow in tapered ducts. International Journal of Mechanical Sciences, 2004, 46, 981-1004.	3.6	34
36	Time-domain computation of muffler frequency response: Comparison of different numerical schemes. Journal of Sound and Vibration, 2007, 305, 333-347.	2.1	34

#	Article	IF	CITATIONS
37	Analysis of the role of altitude on diesel engine performance and emissions using an atmosphere simulator. International Journal of Engine Research, 2017, 18, 105-117.	1.4	30
38	A methodology to identify the intake charge cylinder-to-cylinder distribution in turbocharged direct injection Diesel engines. Measurement Science and Technology, 2008, 19, 065401.	1.4	29
39	A procedure to reduce pollutant gases from Diesel combustion during European MVEG-A cycle by using electrical intake air-heaters. Fuel, 2008, 87, 2760-2778.	3.4	28
40	Radial turbine performance measurement under extreme off-design conditions. Energy, 2017, 125, 72-84.	4.5	28
41	Experimental and computational approach to the transient behaviour of wall-flow diesel particulate filters. Energy, 2017, 119, 887-900.	4.5	28
42	Study of the Potential of Intake Air Heating in Automotive DI Diesel Engines. , 2006, , .		26
43	Importance of Mechanical Losses Modeling in the Performance Prediction of Radial Turbochargers under Pulsating Flow Conditions. SAE International Journal of Engines, 0, 6, 729-738.	0.4	26
44	Analysis and Methodology to Characterize Heat Transfer Phenomena in Automotive Turbochargers. Journal of Engineering for Gas Turbines and Power, 2015, 137, .	0.5	26
45	Turbocharger turbine rotor tip leakage loss and mass flow model valid up to extreme off-design conditions with high blade to jet speed ratio. Energy, 2018, 147, 1299-1310.	4.5	25
46	Test Bench for Turbocharger Groups Characterization. , 0, , .		24
47	Analysis of fluid-dynamic guidelines in diesel particulate filter sizing for fuel consumption reduction in post-turbo and pre-turbo placement. Applied Energy, 2014, 132, 507-523.	5.1	24
48	Experimental approach for the characterization and performance analysis of twin entry radial-inflow turbines in a gas stand and with different flow admission conditions. Applied Thermal Engineering, 2019, 159, 113737.	3.0	24
49	High efficiency two stroke opposed piston engine for plug-in hybrid electric vehicle applications: Evaluation under homologation and real driving conditions. Applied Energy, 2021, 282, 116078.	5.1	24
50	Turbine and exhaust ports thermal insulation impact on the engine efficiency and aftertreatment inlet temperature. Applied Energy, 2019, 240, 409-423.	5.1	23
51	Theoretical and experimental evaluation of the spark-ignition premixed oxy-fuel combustion concept for future CO2 captive powerplants. Energy Conversion and Management, 2021, 244, 114498.	4.4	23
52	Cycle to Cycle Diesel Combustion Characterisation During Engine Transient Operation. , 0, , .		22
53	Efficiency Characterization of Centripetal Turbines under Pulsating Flow Conditions. , 0, , .		21
54	An on-engine method for dynamic characterisation of NO concentration sensors. Experimental Thermal and Fluid Science, 2011, 35, 470-476.	1.5	21

#	Article	IF	CITATIONS
55	Evaluation of different heat transfer conditions on an automotive turbocharger. International Journal of Engine Research, 2015, 16, 137-151.	1.4	21
56	Methodological analysis of variable geometry turbine technology impact on the performance of highly downsized spark-ignition engines. Energy, 2021, 215, 119122.	4.5	21
57	Derivation of the method of characteristics for the fluid dynamic solution of flow advection along porous wall channels. Applied Mathematical Modelling, 2012, 36, 3134-3152.	2.2	20
58	Development and verification of an in-flow water condensation model for 3D-CFD simulations of humid air streams mixing. Computers and Fluids, 2018, 167, 158-165.	1.3	19
59	A modelling tool for engine and exhaust aftertreatment performance analysis in altitude operation. Results in Engineering, 2019, 4, 100054.	2.2	19
60	Experimental Study of the Turbine Inlet Gas Temperature Influence on Turbocharger Performance. , 0, ,		18
61	1D gas dynamic modelling of mass conservation in engine duct systems with thermal contact discontinuities. Mathematical and Computer Modelling, 2009, 49, 1078-1088.	2.0	18
62	Assessment by means of gas dynamic modelling of a pre-turbo diesel particulate filter configuration in a turbocharged HSDI diesel engine under full-load transient operation. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2011, 225, 1134-1155.	1.1	18
63	Internal pore diffusion and adsorption impact on the soot oxidation in wall-flow particulate filters. Energy, 2019, 179, 407-421.	4.5	18
64	General Procedure for the Determination of Heat Transfer Properties in Small Automotive Turbochargers. SAE International Journal of Engines, 0, 8, 30-41.	0.4	17
65	On the impact of DPF downsizing and cellular geometry on filtration efficiency in pre- and post-turbine placement. Journal of Aerosol Science, 2017, 113, 20-35.	1.8	17
66	A holistic methodology to correct heat transfer and bearing friction losses from hot turbocharger maps in order to obtain adiabatic efficiency of the turbomachinery. International Journal of Engine Research, 2020, 21, 1314-1335.	1.4	17
67	Predictive Modelling Study of the Transient Load Response in a Heavy-Duty Turbocharged Diesel Engine. , 0, , .		16
68	Description and Analysis of a One-Dimensional Gas-Dynamic Model With Independent Time Discretization. , 2008, , .		16
69	Optimization of the inlet air line of an automotive turbocharger. International Journal of Engine Research, 2013, 14, 92-104.	1.4	16
70	On the Impact of Particulate Matter Distribution on Pressure Drop of Wall-Flow Particulate Filters. Applied Sciences (Switzerland), 2017, 7, 234.	1.3	15
71	An innovative losses model for efficiency map fitting of vaneless and variable vaned radial turbines extrapolating towards extreme off-design conditions. Energy, 2019, 180, 626-639.	4.5	15

A Model for Load Transients of Turbocharged Diesel Engines. , 1999, , .

14

#	Article	IF	CITATIONS
73	Experimental assessment of a pre-turbo aftertreatment configuration in a single stage turbocharged diesel engine. Part 2: Transient operation. Energy, 2015, 80, 614-627.	4.5	14
74	Impact on Reduction of Pollutant Emissions from Passenger Cars when Replacing Euro 4 with Euro 6d Diesel Engines Considering the Altitude Influence. Energies, 2019, 12, 1278.	1.6	14
75	Analysis of a novel concept of 2-stroke rod-less opposed pistons engine (2S-ROPE): Testing, modelling, and forward potential. Applied Energy, 2021, 282, 116135.	5.1	14
76	Oxy-fuel combustion feasibility of compression ignition engines using oxygen separation membranes for enabling carbon dioxide capture. Energy Conversion and Management, 2021, 247, 114732.	4.4	14
77	Study of turbocharger shaft motion by means of non-invasive optical techniques: Application to the behaviour analysis in turbocharger lubrication failures. Mechanical Systems and Signal Processing, 2012, 32, 292-305.	4.4	13
78	Analysis of the influence of pre-DPF water injection technique on pollutants emission. Energy, 2015, 89, 778-792.	4.5	13
79	Pre-design Criteria for Exhaust Manifolds in I.C. Automotive Engines. , 1998, , .		12
80	Transient particle emission measurement with optical techniques. Measurement Science and Technology, 2008, 19, 065404.	1.4	12
81	High-frequency response of a calculation methodology for gas dynamics based on Independent Time Discretisation. Mathematical and Computer Modelling, 2009, 50, 812-822.	2.0	12
82	Influence of DPF Soot Loading on Engine Performance with a Pre-Turbo Aftertreatment Exhaust Line. , 2012, , .		12
83	Analysis of heavy-duty turbocharged diesel engine response under cold transient operation with a pre-turbo aftertreatment exhaust manifold configuration. International Journal of Engine Research, 2013, 14, 341-353.	1.4	12
84	Analysis of Engine Walls Thermal Insulation: Performance and Emissions. , 0, , .		12
85	Relevance of valve overlap for meeting Euro 5 soot emissions requirements during load transient process in heavy duty diesel engines. International Journal of Vehicle Design, 2006, 41, 343.	0.1	11
86	Performance Analysis of a Turbocharged Heavy Duty Diesel Engine with a Pre-turbo Diesel Particulate Filter Configuration. SAE International Journal of Engines, 0, 4, 2559-2575.	0.4	11
87	Brayton cycle for internal combustion engine exhaust gas waste heat recovery. Advances in Mechanical Engineering, 2015, 7, 168781401559031.	0.8	11
88	Contribution to tip leakage loss modeling in radial turbines based on 3D flow analysis and 1D characterization. International Journal of Heat and Fluid Flow, 2019, 78, 108423.	1.1	11
89	Late Fuel Post-Injection Influence on the Dynamics and Efficiency of Wall-Flow Particulate Filters Regeneration. Applied Sciences (Switzerland), 2019, 9, 5384.	1.3	11
90	Overview of Clean Automotive Thermal Propulsion Options for India to 2030. Applied Sciences (Switzerland), 2020, 10, 3604.	1.3	11

#	Article	IF	CITATIONS
91	Contribution to the Modeling and Understanding of Cold Pulsating Flow Influence in the Efficiency of Small Radial Turbines for Turbochargers. Journal of Engineering for Gas Turbines and Power, 2012, 134, .	0.5	10
92	Description and Performance Analysis of a Flow Test Rig to Simulate Altitude Pressure Variation for Internal Combustion Engines Testing. SAE International Journal of Engines, 2014, 7, 1686-1696.	0.4	10
93	Application of Pre-DPF Water Injection Technique for Pressure Drop Limitation. , 2015, , .		10
94	Experimental validation of a one-dimensional twin-entry radial turbine model under non-linear pulse conditions. International Journal of Engine Research, 2021, 22, 390-406.	1.4	10
95	Using a CFD analysis of the flow capacity in a twin-entry turbine to develop a simplified physics-based model. Aerospace Science and Technology, 2021, 112, 106623.	2.5	10
96	Analysis of Passenger Car Turbocharged Diesel Engines Performance When Tested at Altitude and of the Altitude Simulator Device Used. Journal of Engineering for Gas Turbines and Power, 2019, 141, .	0.5	10
97	A Procedure to Achieve 1D Predictive Modeling of Turbochargers under Hot and Pulsating Flow Conditions at the Turbine Inlet. , 2014, , .		9
98	Methodology to Characterize Heat Transfer Phenomena in Small Automotive Turbochargers: Experiments and Modelling Based Analysis. , 2014, , .		9
99	On Cooler and Mixing Condensation Phenomena in the Long-Route Exhaust Gas Recirculation Line. , 0, , .		9
100	Computational Study of the Propeller Position Effects in Wing-Mounted, Distributed Electric Propulsion with Boundary Layer Ingestion in a 25 kg Remotely Piloted Aircraft. Drones, 2021, 5, 56.	2.7	9
101	Heat Transfer Model to Calculate Turbocharged HSDI Diesel Engines Performance. , 0, , .		8
102	Global Analysis of the EGR Circuit in a HSDI Diesel Engine in Transient Operation. , 2005, , .		8
103	Experiments on Wave Transmission and Reflection by Turbochargers in Engine Operating Conditions. , 2006, , .		8
104	Behavior of an IC Engine Turbocharger in Critical Conditions of Lubrication. SAE International Journal of Engines, 0, 6, 797-805.	0.4	8
105	Analysis of the Aftertreatment Sizing for Pre-Turbo DPF and DOC Exhaust Line Configurations. , 0, , .		8
106	Application of the two-step Lax and Wendroff FCT and the CE-SE method to flow transport in wall-flow monoliths. International Journal of Computer Mathematics, 2014, 91, 71-84.	1.0	8
107	Development of a Variable Valve Actuation Control to Improve Diesel Oxidation Catalyst Efficiency and Emissions in a Light Duty Diesel Engine. Energies, 2020, 13, 4561.	1.6	8
108	Propeller Position Effects over the Pressure and Friction Coefficients over the Wing of an UAV with Distributed Electric Propulsion: A Proper Orthogonal Decomposition Analysis. Drones, 2022, 6, 38.	2.7	8

SERRANO JR

#	Article	IF	CITATIONS
109	A performance degradation evaluation method for a turbocharger in a diesel engine. Royal Society Open Science, 2018, 5, 181093.	1.1	7
110	Analytic-numerical approach to flow calculation in intake and exhaust systems of internal combustion engines. Mathematical and Computer Modelling, 2002, 36, 33-45.	2.0	6
111	Experimental Methodology to Characterize Mechanical Losses in Small Turbochargers. , 2010, , .		6
112	Modelling Analysis of Aftertreatment Inlet Temperature Dependence on Exhaust Valve and Ports Design Parameters. , 0, , .		6
113	Adaptation of a 1-D tool to study transient thermal in turbocharger bearing housing. Applied Thermal Engineering, 2018, 134, 564-575.	3.0	6
114	Computational Methodology for Knocking Combustion Analysis in Compression-Ignited Advanced Concepts. Applied Sciences (Switzerland), 2018, 8, 1707.	1.3	6
115	Twin-entry turbine losses: An analysis using CFD data. International Journal of Engine Research, 2022, 23, 1180-1200.	1.4	6
116	Analysis of an extremely fast valve opening camless system to improve transient performance in a turbocharged high speed direct injection diesel engine. International Journal of Vehicle Design, 2009, 49, 192.	0.1	5
117	Study of the Effects on Turbocharger Performance Generated by the Presence of Foreign Objects at the Compressor Intake. Experimental Techniques, 2013, 37, 30-40.	0.9	5
118	Analysis of shock capturing methods for chemical species transport in unsteady compressible flow. Mathematical and Computer Modelling, 2013, 57, 1751-1759.	2.0	5
119	Experimental procedure for the characterization of turbocharger's waste-gate discharge coefficient. Advances in Mechanical Engineering, 2017, 9, 168781401772824.	0.8	5
120	Design, Optimization, and Analysis of Supersonic Radial Turbines. Journal of Engineering for Gas Turbines and Power, 2020, 142, .	0.5	5
121	An Experimental Method to Test Twin and Double Entry Automotive Turbines in Realistic Engine Pulse Conditions. , 0, , .		5
122	Methodology to Standardize and Improve the Calibration Process of a 1D Model of a GTDI Engine. , 0, , .		5
123	A Methodology to Calibrate Gas-Dynamic Models of Turbocharged Petrol Engines With Variable Geometry Turbines and With Focus on Dynamics Prediction During Tip-in Load Transient Tests. , 2020, , .		5
124	A Methodology for Measuring Turbocharger Adiabatic Maps in a Gas-Stand and Its Usage for Calibrating Control Oriented and One-Dimensional Models at Early ICE Design Stages. Journal of Energy Resources Technology, Transactions of the ASME, 2021, 143, .	1.4	5
125	Development of an Oxy-Fuel Combustion System in a Compression-Ignition Engine for Ultra-Low Emissions Powerplants Using CFD and Evolutionary Algorithms. Applied Sciences (Switzerland), 2022, 12, 7104.	1.3	5
126	A new iterative method for flow calculation in intake and exhaust systems of internal combustion engines. Mathematical and Computer Modelling, 2003, 38, 99-111.	2.0	4

#	Article	IF	CITATIONS
127	Experimental validation of a new semiâ€implicit CE–SE scheme for the calculation of unsteady oneâ€dimensional flow in tapered ducts. International Journal for Numerical Methods in Engineering, 2008, 74, 1473-1494.	1.5	4
128	Study of the turbocharger shaft motion by means of infrared sensors. Mechanical Systems and Signal Processing, 2015, 56-57, 246-258.	4.4	4
129	A Robust Adiabatic Model for a Quasi-Steady Prediction of Far-Off Non-Measured Performance in Vaneless Twin-Entry or Dual-Volute Radial Turbines. Applied Sciences (Switzerland), 2020, 10, 1955.	1.3	4
130	Analysis of the Driving Altitude and Ambient Temperature Impact on the Conversion Efficiency of Oxidation Catalysts. Applied Sciences (Switzerland), 2021, 11, 1283.	1.3	4
131	Multidimensional Modeling of the Scavenging and Injection Processes of a Small Two-Stroke Engine Compared to LDV Measurements. , 0, , .		3
132	Estimation of the Extended Turbine Maps for a Radial Inflow Turbine. , 2010, , .		3
133	Lubricity of paraffinic fuels additivated with conventional and non-conventional methyl esters. Advances in Mechanical Engineering, 2019, 11, 168781401987707.	0.8	3
134	AN OBJECTIVE REFLECTION ABOUT THE POTENTIAL FUTURE FOR DIESEL VEHICLES VERSUS ARGUMENTS BASED ON ENERGY POPULISM. Dyna (Spain), 2019, 94, 480-482.	0.1	3
135	Numerical Modeling of Centrifugal Compressors With Heterogeneous Incoming Flow due to Low Pressure Exhaust Gas Recirculation. , 2020, , .		3
136	Influence of Environmental Conditions and Thermodynamic Considerations in the Calculation of Turbochargers Efficiency. , 0, , .		2
137	Assessment of a methodology to mesh the spatial domain in the proximity of the boundary conditions for one-dimensional gas dynamic calculation. Mathematical and Computer Modelling, 2011, 54, 1747-1752.	2.0	2
138	Dynamic Identification of Thermodynamic Parameters for Turbocharger Compressor Models. Journal of Engineering for Gas Turbines and Power, 2015, 137, .	0.5	2
139	Extremely Low Mass Flow at High Blade to Jet Speed Ratio in Variable Geometry Radial Turbines and its Influence on the Flow Pattern: A CFD Analysis. , 2017, , .		2
140	Fast 2-D Heat Transfer Model for Computing Internal Temperatures in Automotive Turbochargers. , 0, ,		2
141	Analysis of Passenger Car Turbocharged Diesel Engines Performance When Tested at Altitude and of the Altitude Simulator Device Used. , 2018, , .		2
142	Influence of Pre-Turbine Small-Sized Oxidation Catalyst on Engine Performance and Emissions under Driving Conditions. Applied Sciences (Switzerland), 2020, 10, 7714.	1.3	2
143	Fuel consumption and aftertreatment thermal management synergy in compression ignition engines at variable altitude and ambient temperature. International Journal of Engine Research, O, , 146808742110350.	1.4	2
144	A Methodology for Measuring Turbocharger Adiabatic Maps in a Gas-Stand and its Usage for Calibrating Control Oriented and 1D Models at Early ICE Design Stages. , 2019, , .		2

#	Article	IF	CITATIONS
145	Contribution to the Understanding of Cold Pulsating Flow Influence in the Efficiency of Small Radial Turbines for Turbochargers. , 2012, , .		1
146	Methodology to Evaluate Turbocharger Turbine Performance at High Blade to Jet Speed Ratio Under Quasi Adiabatic Conditions. , 2017, , .		1
147	Analysis of Unsteady Energy Fluxes in a Turbocharger by Using a Holistic Model Extrapolating Standard Lookup Tables in Full Engine Operating Map. , 2018, , .		1
148	Multi-region System Modelling by using Genetic Programming to Extract Rule Consequent Functions in a TSK Fuzzy System. , 2019, , .		1
149	PERITAJE DE FALLOS EN TURBOCOMPRESORES DE MOTORES DE COMBUSTIÓN INTERNA ALTERNATIVOS. Dyna (Spain), 2017, 92, 82-88.	0.1	1
150	Impact of a Holistic Turbocharger Model in the Prediction of Engines Performance in Transient Operation and in Steady State With LP-EGR. , 2018, , .		1
151	Design, Optimization and Analysis of Supersonic Radial Turbines. , 2019, , .		1
152	Design of a Bubble Reactor for Altitude Simulators Used to Humidify a Combustion Air Stream by Means of CFD Multi-Phase Models. Applied Sciences (Switzerland), 2021, 11, 295.	1.3	1
153	Fuel economy benefits in internal combustion engines due to soot restructuring in the particulate filter by water injection. International Journal of Engine Research, 0, , 146808742210998.	1.4	1
154	Dynamic Identification of Thermodynamic Parameters for Turbocharger Compressor Models. , 2014, , .		0
155	Method for Non-Dimensional Tip Leakage Flow Characterization in Radial Turbines. , 2018, , .		0
156	A methodology to study oil-coking problem in small turbochargers. International Journal of Engine Research, 2020, 21, 1193-1204.	1.4	0
157	Evaluation of a Double-Entry Turbine Model Coupled With a One-Dimensional Calibrated Engine Model at Engine Full Load Curves. Frontiers in Mechanical Engineering, 2021, 6, .	0.8	0
158	An Experimental and Modeling Strategy for Obtaining Complete Characteristic Maps of Dual-Volute Radial Inflow Turbines. Journal of Engineering for Gas Turbines and Power, 2021, 143, .	0.5	0
159	An experimental methodology and model for characterizing radial centrifugal compressors of turbocharged engines from diathermal perspective. Mechanisms and Machine Science, 2019, , 883-892.	0.3	0
160	An Experimental and Modelling Strategy for Obtaining Complete Characteristic Maps of Dual-Volute Radial Inflow Turbines. , 2020, , .		0
161	Thermo-economic analysis of an oxygen production plant powered by an innovative energy recovery system. Energy, 2022, 255, 124419.	4.5	0