José A Riancho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7511994/publications.pdf

Version: 2024-02-01

129 papers 6,091 citations

94433 37 h-index 79698 73 g-index

142 all docs 142 docs citations

times ranked

142

9220 citing authors

#	Article	IF	Citations
1	Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nature Genetics, 2012, 44, 491-501.	21.4	1,100
2	Wholeâ€genome sequencing identifies EN1 as a determinant of bone density and fracture. Nature, 2015, 526, 112-117.	27.8	483
3	Reconstructing the DNA Methylation Maps of the Neandertal and the Denisovan. Science, 2014, 344, 523-527.	12.6	188
4	Seasonal Deficiency of Vitamin D in Children: A Potential Target for Osteoporosis-Preventing Strategies?. Journal of Bone and Mineral Research, 1998, 13, 544-548.	2.8	172
5	The cerebellum ages slowly according to the epigenetic clock. Aging, 2015, 7, 294-306.	3.1	162
6	Expression and functional role of nitric oxide synthase in osteoblast-like cells. Journal of Bone and Mineral Research, 1995, 10, 439-446.	2.8	157
7	Genomeâ€wide profiling of bone reveals differentially methylated regions in osteoporosis and osteoarthritis. Arthritis and Rheumatism, 2013, 65, 197-205.	6.7	133
8	Methylprednisolone in adults hospitalized with COVID-19 pneumonia. Wiener Klinische Wochenschrift, 2021, 133, 303-311.	1.9	126
9	Insights into the genetic architecture of osteoarthritis from stage 1 of the arcOGEN study. Annals of the Rheumatic Diseases, 2011, 70, 864-867.	0.9	119
10	H3K4me1 marks DNA regions hypomethylated during aging in human stem and differentiated cells. Genome Research, 2015, 25, 27-40.	5 . 5	119
11	DNA methylation contributes to the regulation of sclerostin expression in human osteocytes. Journal of Bone and Mineral Research, 2012, 27, 926-937.	2.8	116
12	Assessment of Osteoarthritis Candidate Genes in a Metaâ€Analysis of Nine Genomeâ€Wide Association Studies. Arthritis and Rheumatology, 2014, 66, 940-949.	5.6	108
13	A meta-analysis of genome-wide association studies identifies novel variants associated with osteoarthritis of the hip. Annals of the Rheumatic Diseases, 2014, 73, 2130-2136.	0.9	108
14	Role of DNA methylation in the regulation of the RANKL-OPG system in human bone. Epigenetics, 2012, 7, 83-91.	2.7	99
15	Genetic determinants of heel bone properties: genome-wide association meta-analysis and replication in the GEFOS/GENOMOS consortium. Human Molecular Genetics, 2014, 23, 3054-3068.	2.9	90
16	Epigenetic regulation of alkaline phosphatase in human cells of the osteoblastic lineage. Bone, 2011, 49, 830-838.	2.9	89
17	Age-Related Differences in Cytokine Secretion. Gerontology, 1994, 40, 8-12.	2.8	86
18	Bone mass in young adults with Down syndrome. Journal of Intellectual Disability Research, 2008, 52, 182-189.	2.0	74

#	Article	IF	Citations
19	Wnt pathway genes in osteoporosis and osteoarthritis: differential expression and genetic association study. Osteoporosis International, 2010, 21, 109-118.	3.1	71
20	Fracture risk in patients with prostate cancer on androgen deprivation therapy. Osteoporosis International, 2005, 16, 707-711.	3.1	70
21	Osterix and RUNX2 are Transcriptional Regulators of Sclerostin in Human Bone. Calcified Tissue International, 2016, 99, 302-309.	3.1	66
22	Missense polymorphisms of the WNT16 gene are associated with bone mass, hip geometry and fractures. Osteoporosis International, 2013, 24, 2449-2454.	3.1	62
23	Role of Epigenomics in Bone and Cartilage Disease. Journal of Bone and Mineral Research, 2019, 34, 215-230.	2.8	61
24	Differential analysis of genome-wide methylation and gene expression in mesenchymal stem cells of patients with fractures and osteoarthritis. Epigenetics, 2017, 12, 113-122.	2.7	60
25	Analysis of the Bone MicroRNome in Osteoporotic Fractures. Calcified Tissue International, 2015, 96, 30-37.	3.1	59
26	Clinical, biochemical and genetic spectrum of low alkaline phosphatase levels in adults. European Journal of Internal Medicine, 2016, 29, 40-45.	2.2	57
27	Mechanisms controlling nitric oxide synthesis in osteoblasts. Molecular and Cellular Endocrinology, 1995, 107, 87-92.	3.2	54
28	A new pentaplex system to study short tandem repeat markers of forensic interest on X chromosome. Forensic Science International, 2002, 129, 85-89.	2.2	54
29	A common polymorphism in the 5'-untranslated region of the aromatase gene influences bone mass and fracture risk. European Journal of Endocrinology, 2004, 150, 699-704.	3.7	50
30	Aromatase gene and osteoporosis: relationship of ten polymorphic loci with bone mineral density. Bone, 2005, 36, 917-925.	2.9	47
31	Epigenetic Mechanisms Regulating Mesenchymal Stem Cell Differentiation. Current Genomics, 2015, 16, 368-383.	1.6	46
32	Wnt receptors, bone mass, and fractures: gene-wide association analysis of LRP5 and LRP6 polymorphisms with replication. European Journal of Endocrinology, 2011, 164, 123-131.	3.7	44
33	Identification of an Aromatase Haplotype That Is Associated with Gene Expression and Postmenopausal Osteoporosis. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 660-665.	3. 6	42
34	Contribution of genetic and epigenetic mechanisms to Wnt pathway activity in prevalent skeletal disorders. Gene, 2013, 532, 165-172.	2.2	42
35	Stress decreases the serum level of osteocalcin. Bone and Mineral, 1993, 21, 113-118.	1.9	41
36	Association of ACACB polymorphisms with obesity and diabetes. Molecular Genetics and Metabolism, 2011, 104, 670-676.	1.1	41

#	Article	IF	CITATIONS
37	Common allelic variants of the farnesyl diphosphate synthase gene influence the response of osteoporotic women to bisphosphonates. Pharmacogenomics Journal, 2012, 12, 227-232.	2.0	40
38	Association of the F352V variant of the Klotho gene with bone mineral density. Biogerontology, 2007, 8, 121-127.	3.9	39
39	Osteocyte Deficiency in Hip Fractures. Calcified Tissue International, 2011, 89, 327-334.	3.1	38
40	Specific premature epigenetic aging of cartilage in osteoarthritis. Aging, 2016, 8, 2222-2231.	3.1	38
41	Do Epigenetic Marks Govern Bone Mass and Homeostasis?. Current Genomics, 2012, 13, 252-263.	1.6	38
42	Novel genes and sex differences in COVID-19 severity. Human Molecular Genetics, 2022, 31, 3789-3806.	2.9	38
43	Effects of interleukin-4 on human osteoblast-like cells. Bone and Mineral, 1993, 21, 53-61.	1.9	37
44	Common variations in estrogen-related genes are associated with severe large-joint osteoarthritis: a multicenter genetic and functional study. Osteoarthritis and Cartilage, 2010, 18, 927-933.	1.3	37
45	Klotho Gene Polymorphism and Male Bone Mass. Calcified Tissue International, 2007, 80, 10-14.	3.1	36
46	Aromatase expression in osteoarthritic and osteoporotic bone. Arthritis and Rheumatism, 2008, 58, 1696-1700.	6.7	36
47	Molecular and clinical analysis of <i>ALPL</i> in a cohort of patients with suspicion of Hypophosphatasia. American Journal of Medical Genetics, Part A, 2017, 173, 601-610.	1.2	36
48	MMP14 is a novel target of PTH signaling in osteocytes that controls resorption by regulating soluble RANKL production. FASEB Journal, 2018, 32, 2878-2890.	0.5	34
49	MTHFR Polymorphism and Bone Mineral Density: Meta-Analysis of Published Studies. Calcified Tissue International, 2006, 79, 289-293.	3.1	33
50	Association of the Aromatase Gene Alleles With BMD:Epidemiological and Functional Evidence. Journal of Bone and Mineral Research, 2009, 24, 1709-1718.	2.8	33
51	Age-associated hydroxymethylation in human bone-marrow mesenchymal stem cells. Journal of Translational Medicine, 2016, 14, 207.	4.4	33
52	Genome-wide association study for radiographic vertebral fractures: A potential role for the 16q24 BMD locus. Bone, 2014, 59, 20-27.	2.9	32
53	A Windows-based software for common paternity and sibling analyses. Forensic Science International, 2003, 135, 232-234.	2.2	30
54	Interaction between CYP19 Aromatase and Butyrylcholinesterase Genes Increases Alzheimer's Disease Risk. Dementia and Geriatric Cognitive Disorders, 2005, 20, 153-157.	1.5	30

#	Article	IF	CITATIONS
55	Aromatase and interleukin-10 genetic variants interactively modulate Alzheimer's disease risk. Journal of Neural Transmission, 2008, 115, 863-867.	2.8	30
56	Effects of interleukin-4 on the formation of macrophages and osteoclast-like cells. Journal of Bone and Mineral Research, 1993, 8, 1337-1344.	2.8	30
57	Abnormal bone turnover in individuals with low serum alkaline phosphatase. Osteoporosis International, 2018, 29, 2147-2150.	3.1	30
58	Interleukin-4 Modulates Osteoclast Differentiation and Inhibits the Formation of Resorption Pits in Mouse Osteoclast Cultures. Biochemical and Biophysical Research Communications, 1993, 196, 678-685.	2.1	29
59	The clinical spectrum of hypocalcaemia associated with bone metastases. Journal of Internal Medicine, 1989, 226, 449-452.	6.0	28
60	Role of BMPs in the regulation of sclerostin as revealed by an epigenetic modifier of human bone cells. Molecular and Cellular Endocrinology, 2013, 369, 27-34.	3.2	28
61	The Role of DNA Methylation in Common Skeletal Disorders. Biology, 2012, 1, 698-713.	2.8	27
62	DNA methylation and the social gradient of osteoporotic fracture: A conceptual model. Bone, 2016, 84, 204-212.	2.9	27
63	Biomechanical Indices of the Femoral Neck Estimated From the Standard DXA Output: Age- and Sex-Related Differences. Journal of Clinical Densitometry, 2007, 10, 39-45.	1.2	26
64	Nitric Oxide is Involved in the Down-regulation of SOST Expression Induced by Mechanical Loading. Calcified Tissue International, 2014, 94, 414-422.	3.1	26
65	Bone mass in young adults: relationship with gender, weight and genetic factors. Journal of Internal Medicine, 2005, 258, 554-562.	6.0	25
66	Genetic polymorphisms are associated with serum levels of sex hormone binding globulin in postmenopausal women. BMC Medical Genetics, 2008, 9, 112.	2.1	25
67	A gene-to-gene interaction between aromatase and estrogen receptors influences bone mineral density. European Journal of Endocrinology, 2006, 155, 53-59.	3.7	24
68	Exon array analysis reveals genetic heterogeneity in atypical femoral fractures. A pilot study. Molecular and Cellular Biochemistry, 2015, 409, 45-50.	3.1	22
69	Age-related influence of common aromatase gene polymorphisms on bone mass of healthy men. Bone, 2004, 35, 243-248.	2.9	21
70	Activation of nuclear receptor NR5A2 increases Glut4 expression and glucose metabolism in muscle cells. Biochemical and Biophysical Research Communications, 2014, 446, 614-619.	2.1	21
71	Epigenetics of Skeletal Diseases. Current Osteoporosis Reports, 2018, 16, 246-255.	3.6	21
72	Identification of a novel locus on chromosome 2q13, which predisposes to clinical vertebral fractures independently of bone density. Annals of the Rheumatic Diseases, 2018, 77, 378-385.	0.9	21

#	Article	IF	CITATIONS
73	Adiposity, estradiol, and genetic variants of steroid-metabolizing enzymes as determinants of bone mineral density. European Journal of Endocrinology, 2007, 156, 117-122.	3.7	20
74	Pharmacogenomics of osteoporosis: a pathway approach. Pharmacogenomics, 2012, 13, 815-829.	1.3	20
75	The Influence of Nitrogen Dioxide on Arrhythmias in Spain and Its Relationship with Atmospheric Circulation. Cardiovascular Toxicology, 2017, 17, 88-96.	2.7	20
76	Relationship of sclerostin and secreted frizzled protein polymorphisms with bone mineral density. Menopause, 2011, 18, 802-807.	2.0	19
77	Association Study of Sirtuin 1 Polymorphisms with Bone Mineral Density and Body Mass Index. Archives of Medical Research, 2012, 43, 363-368.	3.3	19
78	Diverging results of areal and volumetric bone mineral density in Down syndrome. Osteoporosis International, 2017, 28, 965-972.	3.1	19
79	Indel analysis by droplet digital PCR: a sensitive method for DNA mixture detection and chimerism analysis. International Journal of Legal Medicine, 2017, 131, 67-72.	2.2	19
80	Polymorphisms of the WNT10B Gene, Bone Mineral Density, and Fractures in Postmenopausal Women. Calcified Tissue International, 2009, 85, 113-118.	3.1	18
81	The Epigenome at the Crossroad Between Social Factors, Inflammation, and Osteoporosis Risk. Clinical Reviews in Bone and Mineral Metabolism, 2017, 15, 59-68.	0.8	18
82	How to interpret epigenetic association studies: a guide for clinicians. BoneKEy Reports, 2016, 5, 797.	2.7	18
83	Interleukin-4 as a bone regulatory factor: Effects on murine osteoblast-like cells. Journal of Endocrinological Investigation, 1995, 18, 174-179.	3.3	17
84	Polymorphisms in the CYP19 gene that influence bone mineral density. Pharmacogenomics, 2007, 8, 339-352.	1.3	17
85	Genome-wide association study for radiographic vertebral fractures: a potential role for the 16q24 BMD locus. Bone, 2014, 59, 20-7.	2.9	17
86	Gitelman syndrome: genetic and expression analysis of the thiazide-sensitive sodium-chloride transporter in blood cells. Nephrology Dialysis Transplantation, 2006, 21, 217-220.	0.7	16
87	Association of aromatase and estrogen receptor gene polymorphisms with hip fractures. Osteoporosis International, 2008, 19, 787-792.	3.1	14
88	Wnt-related genes and large-joint osteoarthritis: association study and replication. Rheumatology International, 2013, 33, 2875-2880.	3.0	13
89	Genetic and acquired factors influencing the effectiveness and toxicity of drug therapy in osteoporosis. Expert Opinion on Drug Metabolism and Toxicology, 2016, 12, 389-398.	3.3	13
90	Influence of solar irradiation on vitamin D levels in children on anticonvulsant drugs. Acta Neurologica Scandinavica, 1989, 79, 296-299.	2.1	10

#	Article	IF	Citations
91	Generation and characterization of two immortalized human osteoblastic cell lines useful for epigenetic studies. Journal of Bone and Mineral Metabolism, 2017, 35, 150-160.	2.7	10
92	Analysis of volumetric BMD in people with Down syndrome using DXA-based 3D modeling. Archives of Osteoporosis, 2019, 14, 98.	2.4	10
93	Long Noncoding RNAs as Bone Marrow Stem Cell Regulators in Osteoporosis. DNA and Cell Biology, 2020, 39, 1691-1699.	1.9	10
94	Significance of micro-geographical population structure in forensic cases: a bayesian exploration. International Journal of Legal Medicine, 2003, 117, 302-305.	2.2	9
95	A Sclerostin Super-Producer Cell Line Derived from the Human Cell Line SaOS-2: A New Tool for the Study of the Molecular Mechanisms Driving Sclerostin Expression. Calcified Tissue International, 2014, 95, 194-199.	3.1	8
96	The prosecutor's and defendant's Bayesian nomograms. International Journal of Legal Medicine, 2002, 116, 312-313.	2.2	7
97	Genetic DNA profile in urine and hair follicles from patients who have undergone allogeneic hematopoietic stem cell transplantation. Science and Justice - Journal of the Forensic Science Society, 2017, 57, 336-340.	2.1	7
98	Epigenetics of Osteoporosis: Critical Analysis of Epigenetic Epidemiology Studies. Current Genomics, 2015, 16, 405-410.	1.6	7
99	Genetic Polymorphisms of the Wnt Receptor LRP5 are Differentially Associated with Trochanteric and Cervical Hip Fractures. Calcified Tissue International, 2012, 90, 137-143.	3.1	6
100	Non-synonymous WNT16 polymorphisms alleles are associated with different osteoarthritis phenotypes. Rheumatology International, 2017, 37, 1667-1672.	3.0	6
101	Haplotypes of intron 4 of the estrogen receptor alpha gene and hip fractures: a replication study in Caucasians. BMC Medical Genetics, $2010, 11, 16$.	2.1	5
102	Nuclear receptor NR5A2 and bone: gene expression and association with bone mineral density. European Journal of Endocrinology, 2012, 166, 69-75.	3.7	5
103	Effects of Systemic or Local Administration of Mesenchymal Stem Cells from Patients with Osteoporosis or Osteoarthritis on Femoral Fracture Healing in a Mouse Model. Biomolecules, 2022, 12, 722.	4.0	5
104	Genetics of osteoporosis. Aging Health, 2008, 4, 365-376.	0.3	4
105	Analysis of post-transplant chimerism by using a single amplification reaction of 38 Indel polymorphic loci. Bone Marrow Transplantation, 2014, 49, 1432-1435.	2.4	4
106	Epigenetic Regulation of Sost/sclerostin Expression. Current Molecular Biology Reports, 2017, 3, 85-93.	1.6	4
107	Epigenetic Aging in Osteoporosis. Journal of Bone and Mineral Research, 2018, 33, 1902-1903.	2.8	4
108	Osteogenic capacity of mesenchymal stem cells from patients with osteoporotic hip fractures in vivo. Connective Tissue Research, 2021 , , $1-13$.	2.3	4

#	Article	IF	Citations
109	Effective Osteogenic Priming of Mesenchymal Stem Cells through LNA-ASOs-Mediated Sfrp1 Gene Silencing. Pharmaceutics, 2021, 13, 1277.	4.5	4
110	Hyperbaric Oxygen Therapy Does Not Have a Negative Impact on Bone Signaling Pathways in Humans. Healthcare (Switzerland), 2021, 9, 1714.	2.0	4
111	Pharmacogenomics of Osteoporotic Fractures. Methods in Molecular Biology, 2014, 1175, 661-670.	0.9	3
112	Polymorphisms of the farnesyl diphosphate synthase gene modulate bone changes in response to atorvastatin. Rheumatology International, 2014, 34, 1073-1077.	3.0	3
113	Expression of genes related to energy metabolism (osteocalcin, FOXO1, insulin receptor, and SOST) in bone cells of Goto-Kakizaki rats and response to bariatric surgery. Surgery for Obesity and Related Diseases, 2014, 10, 299-303.	1.2	3
114	Hepatotoxicidad grave por amiodarona intravenosa. Medicina ClÃnica, 2019, 153, 258-259.	0.6	3
115	Pharmacogenetics of Osteoporosis: A Pathway Analysis of the Genetic Influence on the Effects of Antiresorptive Drugs. Pharmaceutics, 2022, 14, 776.	4.5	3
116	Role of the Klotho Gene in Bone and Mineral Metabolism. Clinical Reviews in Bone and Mineral Metabolism, 2008, 6, 31-36.	0.8	2
117	Response to "Weighting the effect of CYP19A gene in bone mineral density of postmenopausal women― Bone, 2006, 38, 953.	2.9	1
118	Genetics of Osteoporosis: Half-Full or Half-Empty?. Clinical Reviews in Bone and Mineral Metabolism, 2010, 8, 49-50.	0.8	1
119	Orientation of whole bone samples of small rodents matters during bending tests. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 65, 200-212.	3.1	1
120	Association of LCT -13910C>T polymorphism and hip fracture in a cohort of older adult population from Northern Spain. Gene, 2021, 783, 145560.	2.2	1
121	Impairment of osteoblast growth by nitric oxide synthase inhibitors: an effect independent of nitric oxide and arginine transport inhibition. Methods and Findings in Experimental and Clinical Pharmacology, 1996, 18, 663-7.	0.8	1
122	An LRP6 mutation (Arg360His) associated with low bone mineral density but not cardiovascular events in a Caucasian family. Osteoporosis International, 0, , .	3.1	1
123	SNP typing by using Taqman assays with limited availability of DNA. Forensic Science International: Genetics Supplement Series, 2008, 1, 490-491.	0.3	0
124	Avoiding introduction of bias in the analysis of the methylation of free circulating DNA. Clinica Chimica Acta, 2015, 444, 206-207.	1.1	0
125	Methylation of the Sclerostin <i>(SOST)</i> Gene in Serum Free DNA: A New Bone Biomarker?. Genetic Testing and Molecular Biomarkers, 2021, 25, 42-47.	0.7	0
126	Influence of hyperbaric oxygen therapy on bone metabolism in patients with neoplasm. Reports of Practical Oncology and Radiotherapy, 2021, 26, 163-169.	0.6	0

#	Article	IF	CITATIONS
127	The Influence of Maternal and Social Factors During Intrauterine Life. , 2019, , 129-149.		O
128	The Social Context of Bone Health: Conclusions and Future Directions. , 2019, , 177-181.		0
129	Postnatal Social Factors: The Epigenome and the Skeleton. , 2019, , 151-175.		O