
Maria Carolina O Rodrigues

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7511673/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dysbiosis and Gut Microbiota Modulation in Systemic Sclerosis. Journal of Clinical Rheumatology, 2022, 28, e568-e573.	0.5	1
2	Autologous hematopoietic stem cell transplantation modifies specific aspects of systemic sclerosis-related microvasculopathy. Therapeutic Advances in Musculoskeletal Disease, 2022, 14, 1759720X2210848.	1.2	6
3	Editorial for "Diastolic Function Assessment of Left and Right Ventricles by <scp>MRI</scp> in Systemic Sclerosis Patientsâ€: Journal of Magnetic Resonance Imaging, 2022, 56, 1427-1428.	1.9	0
4	Severity and mortality of COVID-19 in patients with systemic sclerosis: a Brazilian multicenter study. Seminars in Arthritis and Rheumatism, 2022, 55, 151987.	1.6	12
5	Allogeneic haematopoietic stem cell transplantation resets T―and Bâ€cell compartments in sickle cell disease patients. Clinical and Translational Immunology, 2022, 11, e1389.	1.7	2
6	Autologous hematopoietic stem cell transplantation promotes connective tissue remodeling in systemic sclerosis patients. Arthritis Research and Therapy, 2022, 24, 95.	1.6	4
7	Autologous stem cell transplantation for progressive systemic sclerosis: a prospective non-interventional study from the European Society for Blood and Marrow Transplantation Autoimmune Disease Working Party. Haematologica, 2021, 106, 375-383.	1.7	57
8	A review of hematopoietic stem cell transplantation for autoimmune diseases: multiple sclerosis, systemic sclerosis and Crohn's disease. Position paper of the Brazilian Society of Bone Marrow Transplantation. Hematology, Transfusion and Cell Therapy, 2021, 43, 65-86.	0.1	15
9	Hematopoietic stem cell transplantation for systemic sclerosis: Brazilian experience. Advances in Rheumatology, 2021, 61, 9.	0.8	22
10	Autologous haematopoietic stem cell transplantation restores the suppressive capacity of regulatory B cells in systemic sclerosis patients. Rheumatology, 2021, 60, 5538-5548.	0.9	15
11	HSCT FOR AUTOIMMUNE DISEASES. Journal of Bone Marrow Transplantation and Cellular Therapy, 2021, 2, 127-130.	0.1	0
12	Hypoxia priming improves in vitro angiogenic properties of umbilical cord derived-mesenchymal stromal cells expanded in stirred-tank bioreactor. Biochemical Engineering Journal, 2021, 168, 107949.	1.8	9
13	New autoimmune diseases after autologous hematopoietic stem cell transplantation for multiple sclerosis. Bone Marrow Transplantation, 2021, 56, 1509-1517.	1.3	14
14	Bone Marrow Soluble Mediator Signatures of Patients With Philadelphia Chromosome-Negative Myeloproliferative Neoplasms. Frontiers in Oncology, 2021, 11, 665037.	1.3	10
15	Hematopoietic stem cell transplantation reverses white matter injury measured by diffusion-tensor imaging (DTI) in sickle cell disease patients. Bone Marrow Transplantation, 2021, 56, 2705-2713.	1.3	8
16	Life after Autologous Hematopoietic Stem Cell Transplantation for Systemic Sclerosis. Journal of Blood Medicine, 2021, Volume 12, 951-964.	0.7	5
17	Management of Endothelial Dysfunction in Systemic Sclerosis: Current and Developing Strategies. Frontiers in Medicine, 2021, 8, 788250.	1.2	25
18	Long-Term Effects of Allogeneic Hematopoietic Stem Cell Transplantation on Systemic Inflammation in Sickle Cell Disease Patients. Frontiers in Immunology, 2021, 12, 774442.	2.2	1

#	Article	IF	CITATIONS
19	Mobilisation and harvesting of haematopoietic progenitor cell in autoimmune diseases. Transfusion and Apheresis Science, 2020, 59, 102680.	0.5	0
20	Automatic Quantitative Computed Tomography Evaluation of the Lungs in Patients With Systemic Sclerosis Treated With Autologous Stem Cell Transplantation. Journal of Clinical Rheumatology, 2020, 26, S158-S164.	0.5	8
21	Nursing interventions in autologous stem cell transplantation for autoimmune diseases. Journal of Advanced Nursing, 2020, 76, 3473-3482.	1.5	0
22	Durometry as an alternative tool to the modified Rodnan's skin score in the assessment of diffuse systemic sclerosis patients: a cross-sectional study. Advances in Rheumatology, 2020, 60, 48.	0.8	12
23	Blood transfusion support for sickle cell patients during haematopoietic stem cell transplantation: a singleâ€institution experience. British Journal of Haematology, 2020, 190, e295-e297.	1.2	4
24	Autologous hematopoietic stem cell transplantation with reduced-intensity conditioning regimens in refractory Takayasu arteritis: a retrospective multicenter case-series from the Autoimmune Diseases Working Party (ADWP) of the European Society for Blood and Marrow Transplantation (EBMT). Bone Marrow Transplantation, 2020, 55, 2109-2113.	1.3	8
25	Hematopoietic Stem Cell Transplantation Improves Functional Outcomes of Systemic Sclerosis Patients. Journal of Clinical Rheumatology, 2020, 26, S131-S138.	0.5	8
26	CMV-specific clones may lead to reduced TCR diversity and relapse in systemic sclerosis patients treated with AHSCT. Rheumatology, 2020, 59, e38-e40.	0.9	7
27	Curativo gel de clorexidina no transplante de células-tronco hematopoéticas. ACTA Paulista De Enfermagem, 2020, 33, .	0.1	2
28	Clinical studies using stem cells for treatment of retinal diseases: state of the art. Arquivos Brasileiros De Oftalmologia, 2020, 83, 160-167.	0.2	5
29	Autologous Hematopoietic Stem Cell Therapy of the Subjects with Systemic Sclerosis: Electromyographic Results of the Masticatory Muscles. Prague Medical Report, 2020, 121, 163-171.	0.4	0
30	Emerging Aspects of the Body Composition, Bone Marrow Adipose Tissue and Skeletal Phenotypes in Type 1 Diabetes Mellitus. Journal of Clinical Densitometry, 2019, 22, 420-428.	0.5	20
31	Virtual learning object in hematopoietic stem cell transplantation for autoimmune diseases. Revista Brasileira De Enfermagem, 2019, 72, 994-1000.	0.2	2
32	Teplizumab in Relatives at Risk for Type 1 Diabetes. New England Journal of Medicine, 2019, 381, 1879-1881.	13.9	10
33	THU0712-HPRâ€QUALITY OF LIFE OF PATIENTS WITH MULTIPLE SCLEROSIS AND SYSTEMIC SCLEROSIS SUBMITTED TO HSCT: A COMPARATIVE AND LONGITUDINAL STUDY. , 2019, , .		0
34	SAT0002â€DIFFERENTIAL RECONSTITUTION OF B-CELL SUBSETS IN SYSTEMIC SCLEROSIS PATIENTS AFTER AUTOLOGOUS HEMATOPOIETIC STEM CELL TRANSPLANTATION. , 2019, , .		0
35	Lower Insulin-Dose Adjusted A1c (IDAA1c) Is Associated With Less Complications in Individuals With Type 1 Diabetes Treated With Hematopoetic Stem-Cell Transplantation and Conventional Therapy. Frontiers in Endocrinology, 2019, 10, 747.	1.5	2
36	Effect of Nonmyeloablative Hematopoietic Stem Cell Transplantation vs Continued Disease-Modifying Therapy on Disease Progression in Patients With Relapsing-Remitting Multiple Sclerosis. JAMA - Journal of the American Medical Association, 2019, 321, 165.	3.8	208

#	Article	IF	CITATIONS
37	Editorial: Immune Profile After Autologous Hematopoietic Stem Cell Transplantation for Autoimmune Diseases: Where Do We Stand?. Frontiers in Immunology, 2019, 10, 3044.	2.2	2
38	Homeostatic proliferation leads to telomere attrition and increased PD-1 expression after autologous hematopoietic SCT for systemic sclerosis. Bone Marrow Transplantation, 2018, 53, 1319-1327.	1.3	33
39	Autologous Hematopoietic Stem Cell Transplantation for Autoimmune Diseases: From Mechanistic Insights to Biomarkers. Frontiers in Immunology, 2018, 9, 2602.	2.2	23
40	Immune rebound associates with a favorable clinical response to autologous HSCT in systemic sclerosis patients. Blood Advances, 2018, 2, 126-141.	2.5	71
41	New Horizons in the Treatment of Type 1 Diabetes: More Intense Immunosuppression and Beta Cell Replacement. Frontiers in Immunology, 2018, 9, 1086.	2.2	14
42	Cardiopulmonary assessment of patients with systemic sclerosis for hematopoietic stem cell transplantation: recommendations from the European Society for Blood and Marrow Transplantation Autoimmune Diseases Working Party and collaborating partners. Bone Marrow Transplantation, 2017, 52, 1495-1503.	1.3	88
43	Blogs cannot separate wheat from chaff. Science, 2017, 358, 602-602.	6.0	0
44	Defective expression of apoptosis-related molecules in multiple sclerosis patients is normalized early after autologous haematopoietic stem cell transplantation. Clinical and Experimental Immunology, 2017, 187, 383-398.	1.1	18
45	Zika and chikungunya virus infections in hematopoietic stem cell transplant recipients and oncohematological patients. Blood Advances, 2017, 1, 624-627.	2.5	14
46	Microvascular Complications in Type 1 Diabetes: A Comparative Analysis of Patients Treated with Autologous Nonmyeloablative Hematopoietic Stem-Cell Transplantation and Conventional Medical Therapy. Frontiers in Endocrinology, 2017, 8, 331.	1.5	12
47	Immunological Balance Is Associated with Clinical Outcome after Autologous Hematopoietic Stem Cell Transplantation in Type 1 Diabetes. Frontiers in Immunology, 2017, 8, 167.	2.2	65
48	Allogenic bone narrow transplantation in sickle-cell diseases Revista Da Associação Médica Brasileira, 2016, 62, 16-22.	0.3	8
49	Transcriptional profiling reveals intrinsic mRNA alterations in multipotent mesenchymal stromal cells isolated from bone marrow of newly-diagnosed type 1 diabetes patients. Stem Cell Research and Therapy, 2016, 7, 92.	2.4	21
50	Multipotent mesenchymal stromal cells from patients with newly diagnosed type 1 diabetes mellitus exhibit preserved in vitro and in vivo immunomodulatory properties. Stem Cell Research and Therapy, 2016, 7, 14.	2.4	46
51	Menstrual Blood-Derived Stem Cells: In Vitro and In Vivo Characterization of Functional Effects. Advances in Experimental Medicine and Biology, 2016, 951, 111-121.	0.8	33
52	Xenogeneic Mesenchymal Stromal Cells Improve Wound Healing and Modulate the Immune Response in an Extensive Burn Model. Cell Transplantation, 2016, 25, 201-215.	1.2	50
53	Haematopoietic stem cell transplantation in autoimmune diseases: From basic science to clinical practice. Current Research in Translational Medicine, 2016, 64, 71-82.	1.2	32
54	Immunological correlates of favorable long-term clinical outcome in multiple sclerosis patients after autologous hematopoietic stem cell transplantation. Clinical Immunology, 2016, 169, 47-57.	1.4	55

#	Article	IF	CITATIONS
55	Does ex vi vo CD34+ positive selection influence outcome after autologous hematopoietic stem cell transplantation in systemic sclerosis patients?. Bone Marrow Transplantation, 2016, 51, 501-505.	1.3	39
56	Newly-Generated Regulatory B- and T-Cells Are Associated with Clinical Improvement and Reversal of Dermal Fibrosis in Systemic Sclerosis Patients after Autologous Hematopoietic Stem Cell Transplantation. Blood, 2016, 128, 4625-4625.	0.6	2
57	Autologous hematopoietic stem cell transplantation in neuromyelitis optica: A registry study of the EBMT Autoimmune Diseases Working Party. Multiple Sclerosis Journal, 2015, 21, 189-197.	1.4	56
58	Bone Marrow Mesenchymal Stromal Cells Isolated from Multiple Sclerosis Patients have Distinct Gene Expression Profile and Decreased Suppressive Function Compared with Healthy Counterparts. Cell Transplantation, 2015, 24, 151-165.	1.2	44
59	Onset and outcome of pregnancy after autologous haematopoietic SCT (AHSCT) for autoimmune diseases: a retrospective study of the EBMT autoimmune diseases working party (ADWP). Bone Marrow Transplantation, 2015, 50, 216-220.	1.3	38
60	Autologous haematopoietic stem cell transplantation reduces abnormalities in the expression of immune genes in multiple sclerosis. Clinical Science, 2015, 128, 111-120.	1.8	29
61	Autologous hematopoietic SCT normalizes miR-16, -155 and -142-3p expression in multiple sclerosis patients. Bone Marrow Transplantation, 2015, 50, 380-389.	1.3	79
62	Association of Nonmyeloablative Hematopoietic Stem Cell Transplantation With Neurological Disability in Patients With Relapsing-Remitting Multiple Sclerosis. JAMA - Journal of the American Medical Association, 2015, 313, 275.	3.8	164
63	OP0010â€Autologous Hematopoietic Stem Cell Transplantation Increases T-Cell PD-1 Expression and Regulatory Mechanisms in Systemic Sclerosis Patients. Annals of the Rheumatic Diseases, 2015, 74, 67.3-68.	0.5	0
64	THU0501â€Hematopoietic Stem Cell Transplantation Increases Naive and Regulatory B Cells While Decreasing Memory B Cells in Systemic Sclerosis Patients. Annals of the Rheumatic Diseases, 2014, 73, 356.2-356.	0.5	3
65	Successful outcome of allogeneic stem cell transplantation in Seckel syndrome. Pediatric Transplantation, 2014, 18, E93-5.	0.5	4
66	Cardiac Assessment Before Stem Cell Transplantation for Systemic Sclerosis. JAMA - Journal of the American Medical Association, 2014, 312, 1803.	3.8	11
67	The innate and adaptive immunological aspects in neurodegenerative diseases. Journal of Neuroimmunology, 2014, 269, 1-8.	1.1	37
68	Does Ex Vivo CD34+ Cell Selection Change the Outcome of Systemic Sclerosis Patients Treated with Autologous Hematopoietic Stem Cell Transplantation (AHSCT), an Adwp EBMT Study?. Blood, 2014, 124, 2517-2517.	0.6	0
69	Autologous HSCT for systemic sclerosis – Authors'reply. Lancet, The, 2013, 381, 2080-2081.	6.3	1
70	Cardiac involvement and treatment-related mortality after non-myeloablative haemopoietic stem-cell transplantation with unselected autologous peripheral blood for patients with systemic sclerosis: a retrospective analysis. Lancet, The, 2013, 381, 1116-1124.	6.3	129
71	Blood-Brain Barrier Alterations Provide Evidence of Subacute Diaschisis in an Ischemic Stroke Rat Model. PLoS ONE, 2013, 8, e63553.	1.1	53
72	Guidelines of the Brazilian Society of Bone Marrow Transplantation on hematopoietic stem cell transplantation as a treatment for the autoimmune diseases systemic sclerosis and multiple sclerosis. Revista Brasileira De Hematologia E Hemoterapia, 2013, 35, 134-43.	0.7	12

#	Article	IF	CITATIONS
73	Autologous Hematopoietic Stem Cell Transplantation In Neuromyelitis Optica: A Retrospective Study Of The EBMT Autoimmune Diseases Working Party In Collaboration With The University Of Sao Paulo, Ribeirao Preto, Brazil. Blood, 2013, 122, 2125-2125.	0.6	3
74	Outcome Of Pregnancy After Autologous Hematopoietic Stem Cell Transplantation (AHSCT) For Autoimmune Diseases (AD): A Retrospective Study Of The EBMT Autoimmune Diseases Working Party (ADWP). Blood, 2013, 122, 4640-4640.	0.6	0
75	Mobilization and harvesting of PBPC in newly diagnosed type 1 diabetes mellitus. Bone Marrow Transplantation, 2012, 47, 993-994.	1.3	7
76	Testicular function in patients with type 1 diabetes treated with high-dose CY and autologous hematopoietic SCT. Bone Marrow Transplantation, 2012, 47, 467-468.	1.3	11
77	Breaking the Barrier in Stroke: What Should we Know? A Mini-Review. Current Pharmaceutical Design, 2012, 18, 3615-3623.	0.9	29
78	Nestin Overexpression Precedes Caspase-3 Upregulation in Rats Exposed to Controlled Cortical Impact Traumatic Brain Injury. Cell Medicine, 2012, 4, 55-63.	5.0	22
79	A Tribute to Section Editor Prof. Julio C. Voltarelli. Cell Transplantation, 2012, 21, 799-799.	1.2	Ο
80	Menstrual blood transplantation for ischemic stroke: Therapeutic mechanisms and practical issues. Interventional Medicine & Applied Science, 2012, 4, 59-68.	0.2	12
81	Stroke Therapy Using Menstrual Blood Stem-Like Cells: Method. , 2012, , 191-197.		Ο
82	Immunological Aspects in Amyotrophic Lateral Sclerosis. Translational Stroke Research, 2012, 3, 331-340.	2.3	15
83	Impaired blood–brain/spinal cord barrier in ALS patients. Brain Research, 2012, 1469, 114-128.	1.1	183
84	Neurovascular Aspects of Amyotrophic Lateral Sclerosis. International Review of Neurobiology, 2012, 102, 91-106.	0.9	33
85	Risks, Benefits, and Therapeutic Potential of Hematopoietic Stem Cell Transplantation for Autoimmune Diabetes. Current Diabetes Reports, 2012, 12, 604-611.	1.7	19
86	Peripheral Nerve Repair with Cultured Schwann Cells: Getting Closer to the Clinics. Scientific World Journal, The, 2012, 2012, 1-10.	0.8	58
87	Recent progress in cell therapy for basal ganglia disorders with emphasis on menstrual blood transplantation in stroke. Neuroscience and Biobehavioral Reviews, 2012, 36, 177-190.	2.9	37
88	Multiple Intravenous Administrations of Human Umbilical Cord Blood Cells Benefit in a Mouse Model of ALS. PLoS ONE, 2012, 7, e31254.	1.1	53
89	Stem cell therapy for diabetes mellitus. Kidney International Supplements, 2011, 1, 94-98.	4.6	10
90	Amyotrophic lateral sclerosis: A neurovascular disease. Brain Research, 2011, 1398, 113-125.	1.1	103

#	Article	IF	CITATIONS
91	Toward Personalized Cell Therapies: Autologous Menstrual Blood Cells for Stroke. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-7.	3.0	20
92	Brazilian experience with two conditioning regimens in patients with multiple sclerosis: BEAM/horse ATG and CY/rabbit ATG. Bone Marrow Transplantation, 2010, 45, 239-248.	1.3	69
93	Nephrotic Syndrome After Hematopoietic Cell Transplantation: Manifestation Of GVHD. Biology of Blood and Marrow Transplantation, 2010, 16, S315.	2.0	Ο
94	Use of therapeutic laser for prevention and treatment of oral mucositis. Brazilian Dental Journal, 2009, 20, 215-220.	0.5	57
95	C-Peptide Levels and Insulin Independence Following Autologous Nonmyeloablative Hematopoietic Stem Cell Transplantation in Newly Diagnosed Type 1 Diabetes Mellitus. JAMA - Journal of the American Medical Association, 2009, 301, 1573.	3.8	370
96	Autologous Hematopoietic Stem Cell Transplantation for Type 1 Diabetes. Annals of the New York Academy of Sciences, 2008, 1150, 220-229.	1.8	37
97	Comprimidos mastigáveis de ferro carbonila como alternativa para melhor adesão ao tratamento da anemia ferropriva: análise de dois estudos. Revista Brasileira De Hematologia E Hemoterapia, 2008, 30, .	0.7	0
98	Ethics of Hematopoietic Stem Cell Transplantation in Type 1 Diabetes Mellitus—Reply. JAMA - Journal of the American Medical Association, 2007, 298, 285.	3.8	3
99	Autologous Nonmyeloablative Hematopoietic Stem Cell Transplantation in Newly Diagnosed Type 1 Diabetes Mellitus. JAMA - Journal of the American Medical Association, 2007, 297, 1568.	3.8	482
100	Six cases of leprosy associated with allogeneic hematopoietic SCT. Bone Marrow Transplantation, 2007, 40, 859-863.	1.3	12
101	Haploidentical Stem Cell Transplantation without T Cell Depletion: A Brazilian Protocol Blood, 2006, 108, 5413-5413.	0.6	0
102	Transplante de células-tronco hematopoéticas em doenças reumáticas parte 1: experiência internacional. Revista Brasileira De Reumatologia, 2005, 45, 229.	0.8	6
103	Transplante de células-tronco hematopoéticas em doenças reumáticas. Parte 2: experiência brasileira e perspectivas futuras. Revista Brasileira De Reumatologia, 2005, 45, 301.	0.8	Ο
104	Fludarabine and Oral Busulfan: A Low Toxicity Conditioning Regimen When Plasma Level Targeting and Intravenous Busulfan Is Not Available. A Brazilian Experience Blood, 2005, 106, 5302-5302.	0.6	0
105	Haematopoietic stem cell transplantation for refractory Takayasu's arteritis. British Journal of Rheumatology, 2004, 43, 1308-1309.	2.5	17
106	Consenso brasileiro para transplante de células-tronco hematopoéticas para tratamento de doenças autoimunes. Revista Brasileira De Hematologia E Hemoterapia, 0, 32, 125-135.	0.7	4
107	Terapia celular no diabetes mellitus. Revista Brasileira De Hematologia E Hemoterapia, 0, 31, 149-156.	0.7	3