List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7511490/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An efficient matrix-free preconditioned conjugate gradient based multigrid method for phase field modeling of fracture in heterogeneous materials from 3D images. Computer Methods in Applied Mechanics and Engineering, 2022, 388, 114266.	3.4	2
2	Quasi-periodic lattices: Pattern matters too. Scripta Materialia, 2022, 209, 114378.	2.6	9
3	DIC Challenge 2.0: Developing Images and Guidelines for Evaluating Accuracy and Resolution of 2D Analyses. Experimental Mechanics, 2022, 62, 639-654.	1.1	34
4	Nonâ€parametric stress field estimation for historyâ€dependent materials: Application to ductile material exhibiting Piobert–Lüders localization bands. Strain, 2022, 58, .	1.4	6
5	Effect of microstructural length scales on crack propagation in elastic Cosserat media. Engineering Fracture Mechanics, 2022, 267, 108399.	2.0	4
6	Multiscale analysis of brittle failure in heterogeneous materials. Journal of the Mechanics and Physics of Solids, 2021, 146, 104204.	2.3	8
7	From dislocation nucleation to dislocation multiplication in ceramic nanoparticle. Materials Research Letters, 2021, 9, 278-283.	4.1	6
8	Metrological assessment of multiâ€sensor camera technology for spatiallyâ€resolved ultraâ€highâ€speed imaging of transient high strainâ€rate deformation processes. Strain, 2021, 57, e12381.	1.4	6
9	Capturing the stress evolution in electrode materials that undergo phase transformations during electrochemical cycling. International Journal of Solids and Structures, 2021, 224, 111032.	1.3	10
10	Polydopamine coated Si nanoparticles allow for improved mechanical and electrochemical stability. Electrochimica Acta, 2021, 392, 138993.	2.6	15
11	Unified phase field model to simulate both intergranular and transgranular failure in polycrystalline aggregates. Finite Elements in Analysis and Design, 2021, 194, 103555.	1.7	7
12	Measuring coarse grain deformation by digital image correlation. Strain, 2021, 57, e12378.	1.4	2
13	Concentration-Gradient Prussian Blue Cathodes for Na-Ion Batteries. ACS Energy Letters, 2020, 5, 100-108.	8.8	71
14	An efficient finite element based multigrid method for simulations of the mechanical behavior of heterogeneous materials using CT images. Computational Mechanics, 2020, 66, 1427-1441.	2.2	7
15	Improvement of the digital image correlation close to the borders of an object. Strain, 2020, 56, e12340.	1.4	4
16	An open-source Abaqus implementation of the phase-field method to study the effect of plasticity on the instantaneous fracture toughness in dynamic crack propagation. Computer Methods in Applied Mechanics and Engineering, 2020, 365, 113004.	3.4	66
17	Direct observation of the displacement field and microcracking in a glass by means of X-ray tomography during in situ Vickers indentation experiment. Acta Materialia, 2019, 179, 424-433.	3.8	17
18	Non-parametric material state field extraction from full field measurements. Computational Mechanics, 2019, 64, 501-509.	2.2	23

#	Article	IF	CITATIONS
19	An efficient strategy for large scale 3D simulation of heterogeneous materials to predict effective thermal conductivity. Computational Materials Science, 2019, 166, 265-275.	1.4	14
20	Multiple Cracks Interactions in Stress Corrosion Cracking: In Situ Observation by Digital Image Correlation and Phase Field Modeling. Minerals, Metals and Materials Series, 2019, , 161-174.	0.3	0
21	Vibrational properties of quasi-periodic beam structures. Journal of Sound and Vibration, 2019, 442, 624-644.	2.1	5
22	An innovative technique for real-time adjusting exposure time of silicon-based camera to get stable gray level images with temperature evolution. Mechanical Systems and Signal Processing, 2019, 122, 419-432.	4.4	3
23	Identification of fracture models based on phase field for crack propagation in heterogeneous lattices in a context of non-separated scales. Computational Mechanics, 2019, 63, 1047-1068.	2.2	11
24	A phase field method for modeling anodic dissolution induced stress corrosion crack propagation. Corrosion Science, 2018, 132, 146-160.	3.0	56
25	Room temperature plasticity and phase transformation of nanometer-sized transition alumina nanoparticles under pressure. Acta Materialia, 2018, 150, 308-316.	3.8	15
26	Strong and tough metal/ceramic micro-laminates. Acta Materialia, 2018, 144, 202-215.	3.8	73
27	Multiple Cracks Interactions in Stress Corrosion Cracking: In Situ Observation by Digital Image Correlation and Phase Field Modeling. Minerals, Metals and Materials Series, 2018, , 161-174.	0.3	Ο
28	Data-based derivation of material response. Computer Methods in Applied Mechanics and Engineering, 2018, 331, 184-196.	3.4	90
29	Computational measurements of stress fields from digital images. International Journal for Numerical Methods in Engineering, 2018, 113, 1810-1826.	1.5	17
30	CARPIUC benchmark overview: crack advance, reorientation, propagation and initiation under complex loadings. Advanced Modeling and Simulation in Engineering Sciences, 2018, 5, .	0.7	9
31	On the failure resistance of quasi-periodic lattices. Scripta Materialia, 2018, 156, 23-26.	2.6	3
32	A multiphysics model that can capture crack patterns in Si thin films based on their microstructure. Journal of Power Sources, 2018, 400, 383-391.	4.0	25
33	Identification of the Stress Intensity Factor of Carbon Cathode by Digital Image Correlation. Minerals, Metals and Materials Series, 2017, , 1275-1280.	0.3	2
34	A phase field method for modeling stress corrosion crack propagation in a nickel base alloy. International Journal of Solids and Structures, 2017, 112, 65-82.	1.3	39
35	Multi-phase-field modeling of anisotropic crack propagation for polycrystalline materials. Computational Mechanics, 2017, 60, 289-314.	2.2	121
36	Phase field modelling of anisotropic crack propagation. European Journal of Mechanics, A/Solids, 2017, 65, 279-288.	2.1	97

#	Article	IF	CITATIONS
37	Structural elements made with highly flowable UHPFRC: Correlating computational fluid dynamics (CFD) predictions and non-destructive survey of fiber dispersion with failure modes. Engineering Structures, 2017, 133, 151-171.	2.6	19
38	Evaluation of multiple stress corrosion crack interactions by in-situ Digital Image Correlation. Corrosion Science, 2017, 128, 120-129.	3.0	31
39	Anisotropic failure and size effects in periodic honeycomb materials: A gradient-elasticity approach. Journal of the Mechanics and Physics of Solids, 2017, 99, 35-49.	2.3	6
40	Modeling of inter- and transgranular stress corrosion crack propagation in polycrystalline material by using phase field method. Journal of the Mechanical Behavior of Materials, 2017, 26, 181-191.	0.7	13
41	Size and Environment Effect on the Room Temperature Plastic Deformation of Ceramic Nanoparticles. Microscopy and Microanalysis, 2016, 22, 48-49.	0.2	Ο
42	Effect of casting flow defects on the crack propagation in UHPFRC thin slabs by means of stereovision Digital Image Correlation. Construction and Building Materials, 2016, 129, 182-192.	3.2	21
43	Experimental investigation of higher-order homogenization schemes under large strain. International Journal of Solids and Structures, 2016, 88-89, 263-273.	1.3	4
44	An efficient MultiGrid solver for the 3D simulation of composite materials. Computational Materials Science, 2016, 112, 230-237.	1.4	11
45	Automatic crack tip detection and stress intensity factors estimation of curved cracks from digital images. International Journal for Numerical Methods in Engineering, 2015, 103, 516-534.	1.5	29
46	Methodology for a mechano-electrochemical evaluation of the coupling at the crack tip. Application of halide-induced Stress Corrosion Cracking of Zircaloy-4. Corrosion Science, 2015, 93, 39-47.	3.0	8
47	In situ investigation of MgO nanocube deformation at room temperature. Acta Materialia, 2015, 86, 295-304.	3.8	58
48	Threeâ€dimensional simulation of crack with curved front with direct estimation of stress intensity factors. International Journal for Numerical Methods in Engineering, 2015, 101, 635-652.	1.5	5
49	Finite Strain Kinematics of Multi-scale Material by Digital Image Correlation. Experimental Mechanics, 2015, 55, 1641-1656.	1.1	3
50	Gradient-elasticity for honeycomb materials: Validation and identification from full-field measurements. International Journal of Solids and Structures, 2015, 72, 108-117.	1.3	23
51	DIC identification and X-FEM simulation of fatigue crack growth based on the Williams' series. International Journal of Solids and Structures, 2015, 53, 38-47.	1.3	46
52	Extraction of stress intensity factors for 3D small fatigue cracks using digital volume correlation and X-ray tomography. International Journal of Fatigue, 2015, 71, 3-10.	2.8	39
53	Three-Dimensional Investigation of Free-Edge Effects in Laminate Composites Using X-ray Tomography and Digital Volume Correlation. Experimental Mechanics, 2015, 55, 301-311.	1.1	19
54	3D displacement measurements using a single camera. Optics and Lasers in Engineering, 2014, 57, 20-27.	2.0	14

#	Article	IF	CITATIONS
55	Mechanical behavior law of ceramic nanoparticles from transmission electron microscopy in situ nano-compression tests. Materials Letters, 2014, 119, 107-110.	1.3	34
56	Curve and boundaries measurement using B-splines and virtual images. Optics and Lasers in Engineering, 2014, 52, 145-155.	2.0	23
57	Influence of the Casting Microstructure upon the Tensile Behaviour in A319 Al-Si Alloy Investigated by X-Ray Tomography and Digital Volume Correlation. , 2014, , 73-78.		1
58	Local/global non-intrusive crack propagation simulation using a multigrid X-FEM solver. Computational Mechanics, 2013, 52, 1381-1393.	2.2	59
59	Three-dimensional Analysis of an In Situ Double-torsion Test by X-ray Computed Tomography and Digital Volume Correlation. Experimental Mechanics, 2013, 53, 1265-1275.	1.1	12
60	Robust identification of elasto-plastic constitutive law parameters from digital images using 3D kinematics. International Journal of Solids and Structures, 2013, 50, 73-85.	1.3	72
61	Identification of a cohesive zone model from digital images at the micron-scale. Journal of the Mechanics and Physics of Solids, 2013, 61, 1407-1420.	2.3	44
62	In situ 3D characterization of fatigue cracks displacement fields. Frattura Ed Integrita Strutturale, 2013, 7, 50-53.	0.5	0
63	3D Analysis of a Fatigue Crack in Cast Iron Using Digital Volume Correlation of X-ray Tomographic Images. Conference Proceedings of the Society for Experimental Mechanics, 2013, , 203-209.	0.3	2
64	Identification of asymmetric constitutive laws at high temperature based on Digital Image Correlation. Journal of the European Ceramic Society, 2012, 32, 3949-3958.	2.8	25
65	Three-dimensional Analysis of Fatigue Crack Propagation using X-Ray Tomography, Digital Volume Correlation and Extended Finite Element Simulations. Procedia IUTAM, 2012, 4, 151-158.	1.2	29
66	Controlling Stress Intensity Factors During a Fatigue Crack Propagation Using Digital Image Correlation and a Load Shedding Procedure. Experimental Mechanics, 2012, 52, 1021-1031.	1.1	15
67	Fatigue mechanisms of brazed Al-Mn alloys used in heat exchangers. Conference Proceedings of the Society for Experimental Mechanics, 2011, , 63-67.	0.3	2
68	Identification of damage and cracking behaviours based on energy dissipation mode analysis in a quasi-brittle material using digital image correlation. International Journal of Fracture, 2011, 171, 35-50.	1.1	25
69	Analysis and Artifact Correction for Volume Correlation Measurements Using Tomographic Images from a Laboratory X-ray Source. Experimental Mechanics, 2011, 51, 959-970.	1.1	66
70	3D Xâ€ray Microtomography Volume Correlation to Study Fatigue Crack Growth. Advanced Engineering Materials, 2011, 13, 186-193.	1.6	15
71	Direct estimation of generalized stress intensity factors using a threeâ€scale concurrent multigrid Xâ€FEM. International Journal for Numerical Methods in Engineering, 2011, 85, 1648-1666.	1.5	29
72	Optimal and noise-robust extraction of Fracture Mechanics parameters from kinematic measurements. Engineering Fracture Mechanics, 2011, 78, 1827-1845.	2.0	31

#	Article	IF	CITATIONS
73	Isogeometric analysis for strain field measurements. Computer Methods in Applied Mechanics and Engineering, 2011, 200, 40-56.	3.4	26
74	Digital volume correlation analyses of synchrotron tomographic images. Journal of Strain Analysis for Engineering Design, 2011, 46, 683-695.	1.0	48
75	Multiscale digital image identiffation of heterogeneous elastic properties of softwoods. EPJ Web of Conferences, 2010, 6, 18002.	0.1	1
76	Three dimensional experimental and numerical multiscale analysis of a fatigue crack. Computer Methods in Applied Mechanics and Engineering, 2010, 199, 1307-1325.	3.4	132
77	On the Use of NURBS Functions for Displacement Derivatives Measurement by Digital Image Correlation. Experimental Mechanics, 2010, 50, 1099-1116.	1.1	46
78	A coupled molecular dynamics and extended finite element method for dynamic crack propagation. International Journal for Numerical Methods in Engineering, 2010, 81, 72-88.	1.5	26
79	Hybrid analytical and extended finite element method (HAXâ€FEM): A new enrichment procedure for cracked solids. International Journal for Numerical Methods in Engineering, 2010, 81, 269-285.	1.5	34
80	A fully integrated noise robust strategy for the identification of constitutive laws from digital images. International Journal for Numerical Methods in Engineering, 2010, 84, 631-660.	1.5	96
81	Damage law identification of a quasi brittle ceramic from a bending test using Digital Image Correlation. Journal of the European Ceramic Society, 2010, 30, 2715-2725.	2.8	39
82	Influence of closure on the 3D propagation of fatigue cracks in a nodular cast iron investigated by X-ray tomography and 3D volume correlation. Acta Materialia, 2010, 58, 2957-2967.	3.8	70
83	Mixed-mode crack propagation using a Hybrid Analytical and eXtended Finite Element Method. Comptes Rendus - Mecanique, 2010, 338, 121-126.	2.1	18
84	A Multiscale Molecular Dynamics / Extended Finite Element Method for Dynamic Fracture. Advanced Structured Materials, 2010, , 211-237.	0.3	0
85	Development of a finite element enriched method adapted for the case of multiple cracked structure. European Journal of Computational Mechanics, 2010, 19, 217-228.	0.6	Ο
86	A two-scale approach for fluid flow in fracturing porous media. , 2010, , 451-460.		1
87	Dynamic Crack Propagation Using a Combined Molecular Dynamics/Extended Finite Element Approach. International Journal for Multiscale Computational Engineering, 2010, 8, 221-235.	0.8	6
88	Energy conservation of atomistic/continuum coupling. International Journal for Numerical Methods in Engineering, 2009, 78, 1365-1386.	1.5	38
89	Crack closure and stress intensity factor measurements in nodular graphite cast iron using three-dimensional correlation of laboratory X-ray microtomography images. Acta Materialia, 2009, 57, 4090-4101.	3.8	109
90	Digital image correlation and fracture: an advanced technique for estimating stress intensity factors of 2D and 3D cracks, Journal Physics D: Applied Physics, 2009, 42, 214004	1.3	190

#	Article	IF	CITATIONS
91	An extended and integrated digital image correlation technique applied to the analysis of fractured samples. European Journal of Computational Mechanics, 2009, 18, 285-306.	0.6	109
92	A Finite Element Method for Level Sets. , 2009, , 95-106.		1
93	A Precis Of Two-Scale Approaches For Fracture In Porous Media. Solid Mechanics and Its Applications, 2009, , 149-171.	0.1	2
94	‰tude mécanique d'un changement de phase allotropique à l'échelle mésoscopique. Materiaux Techniques, 2009, 97, 81-87.	Et 0.3	1
95	A two-scale model for fluid flow in an unsaturated porous medium with cohesive cracks. Computational Mechanics, 2008, 42, 227-238.	2.2	133
96	Extended digital image correlation with crack shape optimization. International Journal for Numerical Methods in Engineering, 2008, 73, 248-272.	1.5	186
97	Mass lumping strategies for Xâ€FEM explicit dynamics: Application to crack propagation. International Journal for Numerical Methods in Engineering, 2008, 74, 447-474.	1.5	88
98	A partitionâ€ofâ€unityâ€based finite element method for level sets. International Journal for Numerical Methods in Engineering, 2008, 76, 1513-1527.	1.5	13
99	Extended three-dimensional digital image correlation (X3D-DIC). Comptes Rendus - Mecanique, 2008, 336, 643-649.	2.1	65
100	X-FEM a good candidate for energy conservation in simulation of brittle dynamic crack propagation. Computer Methods in Applied Mechanics and Engineering, 2008, 197, 309-318.	3.4	62
101	Noise-robust stress intensity factor determination from kinematic field measurements. Engineering Fracture Mechanics, 2008, 75, 3763-3781.	2.0	48
102	Experimental investigation of localized phenomena using digital image correlation. Philosophical Magazine, 2008, 88, 3339-3355.	0.7	31
103	Recent progress in digital image correlation: From measurement to mechanical identification. Journal of Physics: Conference Series, 2008, 135, 012002.	0.3	7
104	A method for coupling atoms to continuum mechanics for capturing dynamic crack propagation. European Journal of Computational Mechanics, 2008, 17, 651-662.	0.6	0
105	Two-scale approaches for fracture in fluid-saturated porous media. Interaction and Multiscale Mechanics, 2008, 1, 83-101.	0.4	5
106	Prise en compte de discontinuités en espace et en temps par la méthode des elements finis étendus. European Journal of Computational Mechanics, 2007, 16, 827-843.	0.6	1
107	A discrete model for the dynamic propagation of shear bands in a fluid-saturated medium. International Journal for Numerical and Analytical Methods in Geomechanics, 2007, 31, 347-370.	1.7	41
108	Shear-band capturing using a multiscale extended digital image correlation technique. Computer Methods in Applied Mechanics and Engineering, 2007, 196, 5016-5030.	3.4	111

#	Article	IF	CITATIONS
109	From pictures to extended finite elements: extended digital image correlation (X-DIC). Comptes Rendus - Mecanique, 2007, 335, 131-137.	2.1	59
110	Dynamic crack propagation under mixed-mode loading – Comparison between experiments and X-FEM simulations. International Journal of Solids and Structures, 2007, 44, 6517-6534.	1.3	109
111	2D X-FEM Simulation of Dynamic Brittle Crack Propagation. IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, 2007, , 185-198.	0.1	3
112	Measurement and Identification Techniques for Evolving Discontinuities. IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, 2007, , 395-412.	0.1	0
113	A discrete model for the propagation of discontinuities in a fluid-saturated medium. IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, 2007, , 323-342.	0.1	Ο
114	Measurement and Identification Techniques for Cracks: Application in Cyclic Fatigue. , 2007, , 179-180.		0
115	Composite blade damaging under impact. European Physical Journal Special Topics, 2006, 134, 409-415.	0.2	1
116	A Numerical Approach for Arbitrary Cracks in a Fluid-Saturated Medium. Archive of Applied Mechanics, 2006, 75, 595-606.	1.2	106
117	Efficient explicit time stepping for the eXtended Finite Element Method (X-FEM). International Journal for Numerical Methods in Engineering, 2006, 68, 911-939.	1.5	153
118	A two-scale approach for fluid flow in fractured porous media. International Journal for Numerical Methods in Engineering, 2006, 71, 780-800.	1.5	177
119	An energy-conserving scheme for dynamic crack growth using the eXtended finite element method. International Journal for Numerical Methods in Engineering, 2005, 63, 631-659.	1.5	204
120	A combined space-time extended finite element method. International Journal for Numerical Methods in Engineering, 2005, 64, 260-284.	1.5	62
121	Estimation of mixed-mode stress intensity factors using digital image correlation and an interaction integral. International Journal of Fracture, 2005, 132, 65-79.	1.1	125
122	A stable numerical scheme for the finite element simulation of dynamic crack propagation with remeshing. Computer Methods in Applied Mechanics and Engineering, 2004, 193, 4493-4510.	3.4	53