## **Edmund J Crampin**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/751122/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Spatio-temporal analysis of nanoparticles in live tumor spheroids impacted by cell origin and density.<br>Journal of Controlled Release, 2022, 341, 661-675.                                            | 9.9  | 12        |
| 2  | A semantics, energy-based approach to automate biomodel composition. PLoS ONE, 2022, 17, e0269497.                                                                                                      | 2.5  | 4         |
| 3  | High temporal resolution RNA-seq time course data reveals widespread synchronous activation<br>between mammalian IncRNAs and neighboring protein-coding genes. Genome Research, 2022, 32,<br>1463-1473. | 5.5  | 5         |
| 4  | Understanding nano-engineered particle–cell interactions: biological insights from mathematical<br>models. Nanoscale Advances, 2021, 3, 2139-2156.                                                      | 4.6  | 17        |
| 5  | Hierarchical semantic composition of biosimulation models using bond graphs. PLoS Computational Biology, 2021, 17, e1008859.                                                                            | 3.2  | 15        |
| 6  | Modular dynamic biomolecular modelling with bond graphs: the unification of stoichiometry, thermodynamics, kinetics and data. Journal of the Royal Society Interface, 2021, 18, 20210478.               | 3.4  | 10        |
| 7  | Bio-nano Science: Better Metrics Would Accelerate Progress. Chemistry of Materials, 2021, 33, 7613-7619.                                                                                                | 6.7  | 4         |
| 8  | Maintaining the proliferative cell niche in multicellular models of epithelia. Journal of Theoretical<br>Biology, 2021, 527, 110807.                                                                    | 1.7  | 4         |
| 9  | Modular assembly of dynamic models in systems biology. PLoS Computational Biology, 2021, 17, e1009513.                                                                                                  | 3.2  | 19        |
| 10 | Analysing and simulating energy-based models in biology using BondGraphTools. European Physical<br>Journal E, 2021, 44, 148.                                                                            | 1.6  | 13        |
| 11 | A few clarifications on MIRIBEL. Nature Nanotechnology, 2020, 15, 2-3.                                                                                                                                  | 31.5 | 15        |
| 12 | Ca2+ Release via IP3 Receptors Shapes the Cardiac Ca2+ Transient for Hypertrophic Signaling.<br>Biophysical Journal, 2020, 119, 1178-1192.                                                              | 0.5  | 13        |
| 13 | Isolating the sources of heterogeneity in nano-engineered particle–cell interactions. Journal of the<br>Royal Society Interface, 2020, 17, 20200221.                                                    | 3.4  | 13        |
| 14 | Insights From Computational Modeling Into the Contribution of Mechano-Calcium Feedback on the<br>Cardiac End-Systolic Force-Length Relationship. Frontiers in Physiology, 2020, 11, 587.                | 2.8  | 3         |
| 15 | Physically-plausible modelling of biomolecular systems: A simplified, energy-based model of the mitochondrial electron transport chain. Journal of Theoretical Biology, 2020, 493, 110223.              | 1.7  | 16        |
| 16 | Predicting population extinction in lattice-based birth–death–movement models. Proceedings of the<br>Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476, 20200089.             | 2.1  | 5         |
| 17 | The cardiac Na+/K+ ATPase: An updated, thermodynamically consistent model. Physiome, 2020, , .                                                                                                          | 0.3  | 4         |
| 18 | How Does the Internal Structure of Cardiac Muscle Cells Regulate Cellular Metabolism?. Microscopy and Microanalysis, 2019, 25, 240-241.                                                                 | 0.4  | 0         |

EDMUND J CRAMPIN

| #  | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Revisiting cell–particle association in vitro: A quantitative method to compare particle performance.<br>Journal of Controlled Release, 2019, 307, 355-367.                                                                               | 9.9  | 23        |
| 20 | Link between Low-Fouling and Stealth: A Whole Blood Biomolecular Corona and Cellular Association Analysis on Nanoengineered Particles. ACS Nano, 2019, 13, 4980-4991.                                                                     | 14.6 | 53        |
| 21 | Data-Driven Modelling of the Inositol Trisphosphate ReceptorÂ( \$\$ext {IP}_3ext {R}\$\$ ) and its Role<br>in Calcium-Induced Calcium ReleaseÂ(CICR). Springer Series in Computational Neuroscience, 2019, , 39-68.                       | 0.3  | 2         |
| 22 | Corrected pair correlation functions for environments with obstacles. Physical Review E, 2019, 99, 032124.                                                                                                                                | 2.1  | 5         |
| 23 | Mathematical modelling indicates that lower activity of the haemostatic system in neonates is primarily due to lower prothrombin concentration. Scientific Reports, 2019, 9, 3936.                                                        | 3.3  | 4         |
| 24 | Quantifying the Influence of Nanoparticle Polydispersity on Cellular Delivered Dose. Biophysical<br>Journal, 2019, 116, 33a.                                                                                                              | 0.5  | 1         |
| 25 | Assessing Cardiomyocyte Excitation-Contraction Coupling Site Detection From Live Cell Imaging Using a Structurally-Realistic Computational Model of Calcium Release. Frontiers in Physiology, 2019, 10, 1263.                             | 2.8  | 8         |
| 26 | A thermodynamic framework for modelling membrane transporters. Journal of Theoretical Biology, 2019, 481, 10-23.                                                                                                                          | 1.7  | 24        |
| 27 | DiSNE Movie Visualization and Assessment of Clonal Kinetics Reveal Multiple Trajectories of Dendritic<br>Cell Development. Cell Reports, 2018, 22, 2557-2566.                                                                             | 6.4  | 33        |
| 28 | Creatine-Kinase Shuttle and Rapid Mitochondrial Membrane Potential Conductivity are Needed<br>Simultaneously to Maintain Uniform Metabolite Distributions in the Cardiac Cell Contraction Cycle.<br>Biophysical Journal, 2018, 114, 550a. | 0.5  | 1         |
| 29 | Insights on the impact of mitochondrial organisation on bioenergetics in high-resolution computational models of cardiac cell architecture. PLoS Computational Biology, 2018, 14, e1006640.                                               | 3.2  | 23        |
| 30 | Creating a Structurally Realistic Finite Element Geometric Model of a Cardiomyocyte to Study the<br>Role of Cellular Architecture in Cardiomyocyte Systems Biology. Journal of Visualized Experiments,<br>2018, , .                       | 0.3  | 3         |
| 31 | Bond Graph Representation of Chemical Reaction Networks. IEEE Transactions on Nanobioscience, 2018, 17, 449-455.                                                                                                                          | 3.3  | 14        |
| 32 | Minimum information reporting in bio–nano experimental literature. Nature Nanotechnology, 2018, 13,<br>777-785.                                                                                                                           | 31.5 | 455       |
| 33 | Bond graph modelling of theÂcardiac action potential: implications for drift and non-unique steady<br>states. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2018, 474,<br>20180106.                | 2.1  | 19        |
| 34 | An analytical approach for quantifying the influence of nanoparticle polydispersity on cellular delivered dose. Journal of the Royal Society Interface, 2018, 15, 20180364.                                                               | 3.4  | 33        |
| 35 | Combinatorial Targeting by MicroRNAs Co-ordinates Post-transcriptional Control of EMT. Cell Systems, 2018, 7, 77-91.e7.                                                                                                                   | 6.2  | 92        |
| 36 | Changes in mitochondrial morphology and organization can enhance energy supply from<br>mitochondrial oxidative phosphorylation in diabetic cardiomyopathy. American Journal of Physiology<br>- Cell Physiology, 2017, 312, C190-C197.     | 4.6  | 33        |

EDMUND J CRAMPIN

| #  | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Charge Has a Marked Influence on Hyperbranched Polymer Nanoparticle Association in Whole Human<br>Blood. ACS Macro Letters, 2017, 6, 586-592.                                                                                | 4.8  | 27        |
| 38 | Bond graph modelling of chemoelectrical energy transduction. IET Systems Biology, 2017, 11, 127-138.                                                                                                                         | 1.5  | 18        |
| 39 | Energy-based analysis of biomolecular pathways. Proceedings of the Royal Society A: Mathematical,<br>Physical and Engineering Sciences, 2017, 473, 20160825.                                                                 | 2.1  | 20        |
| 40 | Distributed gene expression modelling for exploring variability in epigenetic function. BMC Bioinformatics, 2016, 17, 446.                                                                                                   | 2.6  | 0         |
| 41 | A Framework to Account for Sedimentation and Diffusion in Particle–Cell Interactions. Langmuir, 2016, 32, 12394-12402.                                                                                                       | 3.5  | 48        |
| 42 | Myocardial energetics is not compromised during compensated hypertrophy in the Dahl salt-sensitive<br>rat model of hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2016,<br>311, H563-H571. | 3.2  | 11        |
| 43 | Modular bondâ€graph modelling and analysis of biomolecular systems. IET Systems Biology, 2016, 10,<br>187-201.                                                                                                               | 1.5  | 35        |
| 44 | Modelling modal gating of ion channels with hierarchical Markov models. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472, 20160122.                                            | 2.1  | 14        |
| 45 | Systems analysis identifies miR-29b regulation of invasiveness in melanoma. Molecular Cancer, 2016, 15, 72.                                                                                                                  | 19.2 | 21        |
| 46 | Information theoretic approaches for inference of biological networks from continuous-valued data. BMC Systems Biology, 2016, 10, 89.                                                                                        | 3.0  | 13        |
| 47 | Regulation of cardiac cellular bioenergetics: mechanisms and consequences. Physiological Reports, 2015, 3, e12464.                                                                                                           | 1.7  | 17        |
| 48 | Network analysis of an in vitro model of androgen-resistance in prostate cancer. BMC Cancer, 2015, 15, 883.                                                                                                                  | 2.6  | 3         |
| 49 | Spatially transformed fluorescence image data for ERK-MAPK and selected proteins within human epidermis. GigaScience, 2015, 4, 63.                                                                                           | 6.4  | 6         |
| 50 | Examination of the Effects of Heterogeneous Organization of RyR Clusters, Myofibrils and<br>Mitochondria on Ca2+ Release Patterns in Cardiomyocytes. PLoS Computational Biology, 2015, 11,<br>e1004417.                      | 3.2  | 46        |
| 51 | Semantics-Based Composition of Integrated Cardiomyocyte Models Motivated by Real-World Use Cases.<br>PLoS ONE, 2015, 10, e0145621.                                                                                           | 2.5  | 29        |
| 52 | Hierarchical bond graph modelling of biochemical networks. Proceedings of the Royal Society A:<br>Mathematical, Physical and Engineering Sciences, 2015, 471, 20150642.                                                      | 2.1  | 41        |
| 53 | A spatial model of fluid recycling in the airways of the lung. Journal of Theoretical Biology, 2015, 382, 198-215.                                                                                                           | 1.7  | 10        |
| 54 | Stimulus-dependent differences in signalling regulate epithelial-mesenchymal plasticity and change the effects of drugs in breast cancer cell lines. Cell Communication and Signaling, 2015, 13, 26.                         | 6.5  | 47        |

Edmund J Crampin

| #  | Article                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Modelling the conditional regulatory activity of methylated and bivalent promoters. Epigenetics and Chromatin, 2015, 8, 21.                                                 | 3.9  | 6         |
| 56 | Regulation of ERK-MAPK signaling in human epidermis. BMC Systems Biology, 2015, 9, 41.                                                                                      | 3.0  | 33        |
| 57 | Virtual Reference Environments: a simple way to make research reproducible. Briefings in Bioinformatics, 2015, 16, 901-903.                                                 | 6.5  | 23        |
| 58 | NAIL, a software toolset for inferring, analyzing and visualizing regulatory networks.<br>Bioinformatics, 2015, 31, 277-278.                                                | 4.1  | 12        |
| 59 | Predicting expression: the complementary power of histone modification and transcription factor binding data. Epigenetics and Chromatin, 2014, 7, 36.                       | 3.9  | 32        |
| 60 | Statistical analysis of modal gating in ion channels. Proceedings of the Royal Society A: Mathematical,<br>Physical and Engineering Sciences, 2014, 470, 20140030.          | 2.1  | 14        |
| 61 | Energy-based analysis of biochemical cycles using bond graphs. Proceedings of the Royal Society A:<br>Mathematical, Physical and Engineering Sciences, 2014, 470, 20140459. | 2.1  | 50        |
| 62 | Multiscale modelling of saliva secretion. Mathematical Biosciences, 2014, 257, 69-79.                                                                                       | 1.9  | 19        |
| 63 | Integration of Steady-State and Temporal Gene Expression Data for the Inference of Gene Regulatory<br>Networks. PLoS ONE, 2013, 8, e72103.                                  | 2.5  | 15        |
| 64 | Gene network inference and visualization tools for biologists: application to new human transcriptome datasets. Nucleic Acids Research, 2012, 40, 2377-2398.                | 14.5 | 65        |
| 65 | MCMC Can Detect Nonidentifiable Models. Biophysical Journal, 2012, 103, 2275-2286.                                                                                          | 0.5  | 80        |
| 66 | A Kinetic Model for Type I and II IP3R Accounting for Mode Changes. Biophysical Journal, 2012, 103, 658-668.                                                                | 0.5  | 59        |
| 67 | MCMC Estimation of Markov Models for Ion Channels. Biophysical Journal, 2011, 100, 1919-1929.                                                                               | 0.5  | 54        |
| 68 | A Graphical User Interface for a Method to Infer Kinetics and Network Architecture (MIKANA). PLoS<br>ONE, 2011, 6, e27534.                                                  | 2.5  | 6         |
| 69 | Cardiac cell modelling: Observations from the heart of the cardiac physiome project. Progress in<br>Biophysics and Molecular Biology, 2011, 104, 2-21.                      | 2.9  | 139       |
| 70 | Gene Network Analysis and Application. Seibutsu Butsuri, 2011, 51, 182-185.                                                                                                 | 0.1  | 1         |
| 71 | Enzyme catalyzed reactions: From experiment to computational mechanism reconstruction.<br>Computational Biology and Chemistry, 2010, 34, 11-18.                             | 2.3  | 7         |
| 72 | Why has reversal of the actin-myosin cross-bridge cycle not been observed experimentally?. Journal of<br>Applied Physiology, 2010, 108, 1465-1471.                          | 2.5  | 13        |

IF # ARTICLE CITATIONS A Metabolite-Sensitive, Thermodynamically Constrained Model of Cardiac Cross-Bridge Cycling: 38 Implications for Force Development during Ischemia. Biophysical Journal, 2010, 98, 267-276. Inference of an in situ epidermal intracellular signaling cascade. , 2010, 2010, 799-802. 74 3 A Thermodynamic Model of the Cardiac Sarcoplasmic/Endoplasmic Ca2+ (SERCA) Pump. Biophysical Journal, 2009, 96, 2029-2042. Sensitivity of NFAT Cycling to Cytosolic Calcium Concentration: Implications for Hypertrophic 76 0.5 38 Signals in Cardiac Myocytes. Biophysical Journal, 2009, 96, 2095-2104. Using Physiome standards to couple cellular functions for rat cardiac excitation–contraction. 46 Experimental Physiology, 2008, 93, 919-929. Bioinformatics, multiscale modeling and the IUPS Physiome Project. Briefings in Bioinformatics, 2008, 78 6.5 89 9, 333-343. Computational biology of cardiac myocytes: proposed standards for the physiome. Journal of Experimental Biology, 2007, 210, 1576-1583. 79 The balance between inactivation and activation of the Na<sup>+</sup>-K<sup>+</sup>pump underlies the triphasic accumulation of extracellular K<sup>+</sup>during myocardial ischemia. American 80 3.2 46 Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H3036-H3045. Modeling Hypertrophic IP3 Transients in the Cardiac Myocyte. Biophysical Journal, 2007, 93, 3421-3433. 82 Reconstructing biochemical pathways from time course data. Proteomics, 2007, 7, 828-838. 2.2 40 A Dynamic Model of Excitation-Contraction Coupling during Acidosis in Cardiac Ventricular 0.5 Myócytes. Biophysical Journal, 2006, 90, 3074-3090. Acidosis in models of cardiac ventricular myocytes. Philosophical Transactions Series A, 84 3.4 41 Mathematical, Physical, and Engineering Sciences, 2006, 364, 1171-1186. Minimum information requested in the annotation of biochemical models (MIRIAM). Nature 17.5 Biotechnology, 2005, 23, 1509-1515. Multi-scale modelling and the IUPS physiome project. Journal of Molecular Histology, 2004, 35, 707-714. 86 2.2 32 Extracting Biochemical Reaction Kinetics from Time Series Data. Lecture Notes in Computer Science, 1.3 2004, , 329-336.

**EDMUND J CRAMPIN**