Jun B Ding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7511154/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A fluorescent sensor for spatiotemporally resolved imaging of endocannabinoid dynamics in vivo. Nature Biotechnology, 2022, 40, 787-798.	9.4	84
2	Fluorescence Imaging of Mitochondrial DNA Base Excision Repair Reveals Dynamics of Oxidative Stress Responses. Angewandte Chemie - International Edition, 2022, 61, .	7.2	11
3	Motor Impairments and Dopaminergic Defects Caused by Loss of Leucine-Rich Repeat Kinase Function in Mice. Journal of Neuroscience, 2022, 42, 4755-4765.	1.7	6
4	Motor learning selectively strengthens cortical and striatal synapses of motor engram neurons. Neuron, 2022, 110, 2790-2801.e5.	3.8	27
5	Enhancing motor learning by increasing the stability of newly formed dendritic spines in the motor cortex. Neuron, 2021, 109, 3298-3311.e4.	3.8	29
6	Structured illumination imaging with quasiâ€periodic patterns. Journal of Biophotonics, 2020, 13, e201960209.	1.1	1
7	Massively parallel microwire arrays integrated with CMOS chips for neural recording. Science Advances, 2020, 6, eaay2789.	4.7	115
8	Functional and molecular heterogeneity of D2R neurons along dorsal ventral axis in the striatum. Nature Communications, 2020, 11, 1957.	5.8	41
9	Cerebellar nuclei evolved by repeatedly duplicating a conserved cell-type set. Science, 2020, 370, .	6.0	123
10	From Neurons to Cognition: Technologies for Precise Recording of Neural Activity Underlying Behavior. BME Frontiers, 2020, 2020, .	2.2	7
11	Neuronal O-GlcNAcylation Improves Cognitive Function in the Aged Mouse Brain. Current Biology, 2019, 29, 3359-3369.e4.	1.8	61
12	Periodic Remodeling in a Neural Circuit Governs Timing of Female Sexual Behavior. Cell, 2019, 179, 1393-1408.e16.	13.5	78
13	Ultrafast Two-Photon Imaging of a High-Gain Voltage Indicator in Awake Behaving Mice. Cell, 2019, 179, 1590-1608.e23.	13.5	242
14	Diametric neural ensemble dynamics in parkinsonian and dyskinetic states. Nature, 2018, 557, 177-182.	13.7	243
15	Selective activation of parvalbumin interneurons prevents stress-induced synapse loss and perceptual defects. Molecular Psychiatry, 2018, 23, 1614-1625.	4.1	80
16	Balanced Activity between Kv3 and Nav Channels Determines Fast-Spiking in Mammalian Central Neurons. IScience, 2018, 9, 120-137.	1.9	26
17	The THO Complex Coordinates Transcripts for Synapse Development and Dopamine Neuron Survival. Cell, 2018, 174, 1436-1449.e20.	13.5	25
18	A cell-type-specific jolt for motor disorders. Nature Neuroscience, 2017, 20, 763-765.	7.1	0

Jun B Ding

#	Article	IF	CITATIONS
19	Motor learning in animal models of Parkinson's disease: Aberrant synaptic plasticity in the motor cortex. Movement Disorders, 2017, 32, 487-497.	2.2	25
20	Cell-type–specific inhibition of the dendritic plateau potential in striatal spiny projection neurons. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7612-E7621.	3.3	53
21	The Locomotion Tug-of-War: Cholinergic and Dopaminergic Interactions Outside the Striatum. Neuron, 2017, 96, 1208-1210.	3.8	0
22	TGF-β Signaling in Dopaminergic Neurons Regulates Dendritic Growth, Excitatory-Inhibitory Synaptic Balance, and Reversal Learning. Cell Reports, 2016, 17, 3233-3245.	2.9	56
23	Input- and Cell-Type-Specific Endocannabinoid-Dependent LTD in the Striatum. Cell Reports, 2015, 10, 75-87.	2.9	101
24	Dynamic rewiring of neural circuits in the motor cortex in mouse models of Parkinson's disease. Nature Neuroscience, 2015, 18, 1299-1309.	7.1	137
25	Aldehyde dehydrogenase 1a1 mediates a GABA synthesis pathway in midbrain dopaminergic neurons. Science, 2015, 350, 102-106.	6.0	182
26	Live-Cell Superresolution Imaging by Pulsed STED Two-Photon Excitation Microscopy. Biophysical Journal, 2013, 104, 770-777.	0.2	138
27	Effect of Imaging in Tissue on Resolution of Pulsed STED Two-Photon Excitation Microscopy. , 2013, , .		0
28	Semaphorin 3E–Plexin-D1 signaling controls pathway-specific synapse formation in the striatum. Nature Neuroscience, 2012, 15, 215-223.	7.1	95
29	Fasting Activation of AgRP Neurons Requires NMDA Receptors and Involves Spinogenesis and Increased Excitatory Tone. Neuron, 2012, 73, 511-522.	3.8	239
30	Dopaminergic neurons inhibit striatal output through non-canonical release of GABA. Nature, 2012, 490, 262-266.	13.7	493
31	Muscarinic Modulation of Striatal Function and Circuitry. Handbook of Experimental Pharmacology, 2012, , 223-241.	0.9	127
32	Cholinergic modulation of synaptic integration and dendritic excitability in the striatum. Current Opinion in Neurobiology, 2011, 21, 425-432.	2.0	88
33	Thalamic Gating of Corticostriatal Signaling by Cholinergic Interneurons. Neuron, 2010, 67, 294-307.	3.8	401
34	Supraresolution Imaging in Brain Slices using Stimulated-Emission Depletion Two-Photon Laser Scanning Microscopy. Neuron, 2009, 63, 429-437.	3.8	155
35	Corticostriatal and Thalamostriatal Synapses Have Distinctive Properties. Journal of Neuroscience, 2008, 28, 6483-6492.	1.7	245
36	Endogenous Serotonin Excites Striatal Cholinergic Interneurons via the Activation of 5-HT 2C, 5-HT6, and 5-HT7 Serotonin Receptors: Implications for Extrapyramidal Side Effects of Serotonin Reuptake Inhibitors. Neuropsychopharmacology, 2007, 32, 1840-1854.	2.8	122

Jun B Ding

#	Article	IF	CITATIONS
37	D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends in Neurosciences, 2007, 30, 228-235.	4.2	973
38	Re-emergence of striatal cholinergic interneurons in movement disorders. Trends in Neurosciences, 2007, 30, 545-553.	4.2	400
39	Dopaminergic Control of Corticostriatal Long-Term Synaptic Depression in Medium Spiny Neurons Is Mediated by Cholinergic Interneurons. Neuron, 2006, 50, 443-452.	3.8	451
40	Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models. Nature Neuroscience, 2006, 9, 251-259.	7.1	678
41	RGS4-dependent attenuation of M4 autoreceptor function in striatal cholinergic interneurons following dopamine depletion. Nature Neuroscience, 2006, 9, 832-842.	7.1	227
42	Effects of myasthenia gravis patients' sera with different autoantibodies on slow K+current at mouse motor nerve terminals. Neurological Research, 2003, 25, 58-62.	0.6	3
43	Different effects of toosendanin on perineurially recorded Ca2+ currents in mouse and frog motor nerve terminals. Neuroscience Research, 2001, 41, 243-249.	1.0	12
44	Depth random-access two-photon Bessel light-sheet imaging indeep tissue. Optics Express, 0, , .	1.7	1