Qianjun He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7511031/publications.pdf

Version: 2024-02-01

16450 18128 14,719 136 64 120 citations h-index g-index papers 145 145 145 16091 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Nuclear-Targeted Drug Delivery of TAT Peptide-Conjugated Monodisperse Mesoporous Silica Nanoparticles. Journal of the American Chemical Society, 2012, 134, 5722-5725.	13.7	899
2	Mesoporous silica nanoparticle based nano drug delivery systems: synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility. Journal of Materials Chemistry, 2011, 21, 5845.	6.7	626
3	Hollow/Rattle-Type Mesoporous Nanostructures by a Structural Difference-Based Selective Etching Strategy. ACS Nano, 2010, 4, 529-539.	14.6	615
4	Intelligent MnO ₂ Nanosheets Anchored with Upconversion Nanoprobes for Concurrent pHâ€∤H ₂ O ₂ â€Responsive UCL Imaging and Oxygenâ€Elevated Synergetic Therapy. Advanced Materials, 2015, 27, 4155-4161.	21.0	599
5	In vivo Biodistribution and Urinary Excretion of Mesoporous Silica Nanoparticles: Effects of Particle Size and PEGylation. Small, 2011, 7, 271-280.	10.0	547
6	Glucoseâ€Responsive Sequential Generation of Hydrogen Peroxide and Nitric Oxide for Synergistic Cancer Starvingâ€Like/Gas Therapy. Angewandte Chemie - International Edition, 2017, 56, 1229-1233.	13.8	505
7	The effect of PEGylation of mesoporous silica nanoparticles on nonspecific binding of serum proteins and cellular responses. Biomaterials, 2010, 31, 1085-1092.	11.4	433
8	MSN Antiâ€Cancer Nanomedicines: Chemotherapy Enhancement, Overcoming of Drug Resistance, and Metastasis Inhibition. Advanced Materials, 2014, 26, 391-411.	21.0	418
9	Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging. Biomaterials, 2012, 33, 1079-1089.	11.4	388
10	A pH-responsive mesoporous silica nanoparticles-based multi-drug delivery system for overcoming multi-drug resistance. Biomaterials, 2011, 32, 7711-7720.	11.4	351
11	Rattle-Structured Multifunctional Nanotheranostics for Synergetic Chemo-/Radiotherapy and Simultaneous Magnetic/Luminescent Dual-Mode Imaging. Journal of the American Chemical Society, 2013, 135, 6494-6503.	13.7	318
12	Intracellular Localization and Cytotoxicity of Spherical Mesoporous Silica Nano―and Microparticles. Small, 2009, 5, 2722-2729.	10.0	280
13	Dual-Targeting Upconversion Nanoprobes across the Blood–Brain Barrier for Magnetic Resonance/Fluorescence Imaging of Intracranial Glioblastoma. ACS Nano, 2014, 8, 1231-1242.	14.6	279
14	The three-stage in vitro degradation behavior of mesoporous silica in simulated body fluid. Microporous and Mesoporous Materials, 2010, 131, 314-320.	4.4	257
15	Xâ€ray Radiationâ€Controlled NOâ€Release for Onâ€Demand Depthâ€Independent Hypoxic Radiosensitization. Angewandte Chemie - International Edition, 2015, 54, 14026-14030.	13.8	241
16	Local generation of hydrogen for enhanced photothermal therapy. Nature Communications, 2018, 9, 4241.	12.8	239
17	A smart upconversion-based mesoporous silica nanotheranostic system for synergetic chemo-/radio-/photodynamic therapy and simultaneous MR/UCL imaging. Biomaterials, 2014, 35, 8992-9002.	11.4	234
18	Overcoming multidrug resistance of cancer cells by direct intranuclear drug delivery using TAT-conjugated mesoporous silica nanoparticles. Biomaterials, 2013, 34, 2719-2730.	11.4	228

#	Article	IF	Citations
19	MSNâ€Mediated Sequential Vascularâ€toâ€Cell Nuclearâ€Targeted Drug Delivery for Efficient Tumor Regression. Advanced Materials, 2014, 26, 6742-6748.	21.0	206
20	An anticancer drug delivery system based on surfactant-templated mesoporous silica nanoparticles. Biomaterials, 2010, 31, 3335-3346.	11.4	205
21	Hollow mesoporous carbon spheresâ€"an excellent bilirubin adsorbent. Chemical Communications, 2009, , 6071.	4.1	173
22	NIRâ€Responsive Onâ€Demand Release of CO from Metal Carbonylâ€Caged Graphene Oxide Nanomedicine. Advanced Materials, 2015, 27, 6741-6746.	21.0	168
23	Multifunctional Mesoporous Composite Nanocapsules for Highly Efficient MRIâ€Guided Highâ€Intensity Focused Ultrasound Cancer Surgery. Angewandte Chemie - International Edition, 2011, 50, 12505-12509.	13.8	166
24	A Hollowâ€Core, Magnetic, and Mesoporous Doubleâ€Shell Nanostructure: In Situ Decomposition/Reduction Synthesis, Bioimaging, and Drugâ€Delivery Properties. Advanced Functional Materials, 2011, 21, 1850-1862.	14.9	157
25	Dual Intratumoral Redox/Enzymeâ€Responsive NOâ€Releasing Nanomedicine for the Specific, Highâ€Efficacy, and Lowâ€Toxic Cancer Therapy. Advanced Materials, 2018, 30, e1704490.	21.0	155
26	Mesoporous silica nanoparticles loading doxorubicin reverse multidrug resistance: performance and mechanism. Nanoscale, 2011, 3, 4314.	5.6	151
27	Homogeneous Carbon/Potassiumâ€Incorporation Strategy for Synthesizing Red Polymeric Carbon Nitride Capable of Nearâ€Infrared Photocatalytic H ₂ Production. Advanced Materials, 2021, 33, e2101455.	21.0	144
28	A novel self-assembled sandwich nanomedicine for NIR-responsive release of NO. Nanoscale, 2015, 7, 20055-20062.	5.6	142
29	NIRâ€Laserâ€Controlled Hydrogenâ€Releasing PdH Nanohydride for Synergistic Hydrogenâ€Photothermal Antibacterial and Woundâ€Healing Therapies. Advanced Functional Materials, 2019, 29, 1905697.	14.9	141
30	Structure-property relationships in manganese oxide - mesoporous silica nanoparticles used for T1-weighted MRI and simultaneous anti-cancer drug delivery. Biomaterials, 2012, 33, 2388-2398.	11.4	135
31	Strategies for engineering advanced nanomedicines for gas therapy of cancer. National Science Review, 2020, 7, 1485-1512.	9.5	130
32	Multifunctional nanoplatform for photoacoustic imaging-guided combined therapy enhanced by CO induced ferroptosis. Biomaterials, 2019, 197, 268-283.	11.4	129
33	Engineering Inorganic Nanoemulsions/Nanoliposomes by Fluorideâ€Silica Chemistry for Efficient Delivery/Coâ€Delivery of Hydrophobic Agents. Advanced Functional Materials, 2012, 22, 1586-1597.	14.9	128
34	Size-controlled synthesis of monodispersed mesoporous silica nano-spheres under a neutral condition. Microporous and Mesoporous Materials, 2009, 117, 609-616.	4.4	126
35	MRI-guided and ultrasound-triggered release of NO by advanced nanomedicine. Nanoscale, 2017, 9, 3637-3645.	5.6	124
36	Light-Responsive Biodegradable Nanomedicine Overcomes Multidrug Resistance via NO-Enhanced Chemosensitization. ACS Applied Materials & Samp; Interfaces, 2016, 8, 13804-13811.	8.0	120

#	Article	IF	CITATIONS
37	Reversible Poreâ€Structure Evolution in Hollow Silica Nanocapsules: Large Pores for siRNA Delivery and Nanoparticle Collecting. Small, 2011, 7, 2935-2944.	10.0	117
38	Development of individualized anti-metastasis strategies by engineering nanomedicines. Chemical Society Reviews, 2015, 44, 6258-6286.	38.1	115
39	A glucose-responsive controlled release of insulin system based on enzyme multilayers-coated mesoporous silica particles. Chemical Communications, 2011, 47, 9459.	4.1	114
40	Hydrophilic mesoporous carbon nanoparticles as carriers for sustained release of hydrophobic anti-cancer drugs. Chemical Communications, 2011, 47, 2101-2103.	4.1	114
41	An anti-ROS/hepatic fibrosis drug delivery system based on salvianolic acid B loaded mesoporous silica nanoparticles. Biomaterials, 2010, 31, 7785-7796.	11.4	111
42	Structuralâ€Engineering Rationales of Gold Nanoparticles for Cancer Theranostics. Advanced Materials, 2016, 28, 8567-8585.	21.0	111
43	Intratumoral H ₂ O ₂ -triggered release of CO from a metal carbonyl-based nanomedicine for efficient CO therapy. Chemical Communications, 2017, 53, 5557-5560.	4.1	110
44	Photocatalysis-mediated drug-free sustainable cancer therapy using nanocatalyst. Nature Communications, 2021, 12, 1345.	12.8	106
45	Sustained release of bioactive hydrogen by Pd hydride nanoparticles overcomes Alzheimer's disease. Biomaterials, 2019, 197, 393-404.	11.4	100
46	Precision gas therapy using intelligent nanomedicine. Biomaterials Science, 2017, 5, 2226-2230.	5.4	98
47	A mesoporous silica nanoparticulate \hat{l}^2 -TCP/BG composite drug delivery system for osteoarticular tuberculosis therapy. Biomaterials, 2011, 32, 1986-1995.	11.4	93
48	Mesoporous carbon@silicon-silica nanotheranostics for synchronous delivery of insoluble drugs and luminescence imaging. Biomaterials, 2012, 33, 4392-4402.	11.4	90
49	Design of an intelligent sub-50 nm nuclear-targeting nanotheranostic system for imaging guided intranuclear radiosensitization. Chemical Science, 2015, 6, 1747-1753.	7.4	88
50	Reassembly of ⁸⁹ Zrâ€Labeled Cancer Cell Membranes into Multicompartment Membraneâ€Derived Liposomes for PETâ€Trackable Tumorâ€Targeted Theranostics. Advanced Materials, 2018, 30, e1704934.	21.0	86
51	Efficient Uptake of ¹⁷⁷ Luâ€Porphyrinâ€PEG Nanocomplexes by Tumor Mitochondria for Multimodalâ€Imagingâ€Guided Combination Therapy. Angewandte Chemie - International Edition, 2018, 57, 218-222.	13.8	85
52	Porphyrin–palladium hydride MOF nanoparticles for tumor-targeting photoacoustic imaging-guided hydrogenothermal cancer therapy. Nanoscale Horizons, 2019, 4, 1185-1193.	8.0	81
53	Global Gene Expression Analysis of Cellular Death Mechanisms Induced by Mesoporous Silica Nanoparticle-Based Drug Delivery System. ACS Nano, 2014, 8, 1309-1320.	14.6	80
54	Template-directed one-step synthesis of flowerlike porous carbonated hydroxyapatite spheres. Materials Letters, 2007, 61, 141-143.	2.6	78

#	Article	IF	CITATIONS
55	Hollow Mesoporous Carbon Spheres with Magnetic Cores and Their Performance as Separable Bilirubin Adsorbents. Chemistry - an Asian Journal, 2009, 4, 1480-1485.	3.3	78
56	Electrocatalytic Activity and CO Tolerance Properties of Mesostructured Pt/WO ₃ Composite as an Anode Catalyst for PEMFCs. Journal of Physical Chemistry C, 2009, 113, 4134-4138.	3.1	76
57	Intranuclear biophotonics by smart design of nuclear-targeting photo-/radio-sensitizers co-loaded upconversion nanoparticles. Biomaterials, 2015, 69, 89-98.	11.4	76
58	Synthesis of a Hierarchical Micro/Mesoporous Structure by Steamâ€Assisted Postâ€Crystallization. Chemistry - A European Journal, 2009, 15, 12949-12954.	3.3	74
59	Mesoporous bioactive glass-coated poly(l-lactic acid) scaffolds: a sustained antibioticdrug release system for bone repairing. Journal of Materials Chemistry, 2011, 21, 1064-1072.	6.7	74
60	Surface Modificationâ^'Complexation Strategy for Cisplatin Loading in Mesoporous Nanoparticles. Journal of Physical Chemistry Letters, 2010, 1, 3446-3450.	4.6	70
61	Glucoseâ€Responsive Sequential Generation of Hydrogen Peroxide and Nitric Oxide for Synergistic Cancer Starvingâ€Like/Gas Therapy. Angewandte Chemie, 2017, 129, 1249-1253.	2.0	70
62	A multistage assembly/disassembly strategy for tumor-targeted CO delivery. Science Advances, 2020, 6, eaba1362.	10.3	70
63	Tumor-specific disintegratable nanohybrids containing ultrasmall inorganic nanoparticles: from design and improved properties to cancer applications. Materials Horizons, 2018, 5, 184-205.	12.2	65
64	Rhodamine B-co-condensed spherical SBA-15 nanoparticles: facile co-condensation synthesis and excellent fluorescence features. Journal of Materials Chemistry, 2009, 19, 3395.	6.7	64
65	Preparation of millimetre-sized mesoporous carbon spheres as an effective bilirubin adsorbent and their blood compatibility. Chemical Communications, 2010, 46, 7127.	4.1	64
66	A "Neckâ€Formation―Strategy for an Antiquenching Magnetic/Upconversion Fluorescent Bimodal Cancer Probe. Chemistry - A European Journal, 2010, 16, 11254-11260.	3.3	62
67	Selfâ€Amplified Photodynamic Therapy through the ¹ O ₂ â€Mediated Internalization of Photosensitizers from a Ppaâ€Bearing Block Copolymer. Angewandte Chemie - International Edition, 2020, 59, 3711-3717.	13.8	62
68	Micro/Nanomaterialsâ€Augmented Hydrogen Therapy. Advanced Healthcare Materials, 2019, 8, e1900463.	7.6	59
69	Intratumoral high-payload delivery and acid-responsive release of H2 for efficient cancer therapy using the ammonia borane-loaded mesoporous silica nanomedicine. Applied Materials Today, 2018, 11, 136-143.	4.3	56
70	Nitric oxide detection methods in vitro and in vivo. Medical Gas Research, 2019, 9, 192.	2.3	55
71	Preparation and characterization of a novel solid base catalyst hydroxyapatite loaded with strontium. Catalysis Communications, 2008, 9, 516-521.	3.3	52
72	Fabrication of mesoporous zeolite microspheres by a one-pot dual-functional templating approach. Journal of Materials Chemistry, 2009, 19, 7614.	6.7	52

#	Article	IF	CITATIONS
73	Acidâ€Responsive H ₂ â€Releasing 2D MgB ₂ Nanosheet for Therapeutic Synergy and Side Effect Attenuation of Gastric Cancer Chemotherapy. Advanced Healthcare Materials, 2019, 8, e1900157.	7.6	51
74	A nanoparticulate pre-chemosensitizer for efficacious chemotherapy of multidrug resistant breast cancer. Scientific Reports, 2016, 6, 21459.	3.3	50
75	MBene as a Theranostic Nanoplatform for Photocontrolled Intratumoral Retention and Drug Release. Advanced Materials, 2021, 33, e2008089.	21.0	48
76	A Subâ€50â€nm Monosized Superparamagnetic Fe ₃ O ₄ @SiO ₂ <i>T₂</i> àâ€Weighted MRI Contrast Agent: Highly Reproducible Synthesis of Uniform Single‣oaded Core–Shell Nanostructures. Chemistry - an Asian Journal, 2009, 4, 1809-1816.	3.3	47
77	Intelligent Metal Carbonyl Metal–Organic Framework Nanocomplex for Fluorescent Traceable H ₂ O ₂ â€Triggered CO Delivery. Chemistry - A European Journal, 2018, 24, 11667-11674.	3.3	47
78	Programmed ROS/CO-releasing nanomedicine for synergetic chemodynamic-gas therapy of cancer. Journal of Nanobiotechnology, 2019, 17, 75.	9.1	45
79	Acid-responsive H ₂ -releasing Fe nanoparticles for safe and effective cancer therapy. Journal of Materials Chemistry B, 2019, 7, 2759-2765.	5.8	45
80	Zwitterionic Polymer Coating of Sulfur Dioxideâ€Releasing Nanosystem Augments Tumor Accumulation and Treatment Efficacy. Advanced Healthcare Materials, 2020, 9, e1901582.	7.6	43
81	Coordination-induced exfoliation to monolayer Bi-anchored MnB ₂ nanosheets for multimodal imaging-guided photothermal therapy of cancer. Theranostics, 2020, 10, 1861-1872.	10.0	43
82	An emulsification–solvent evaporation route to mesoporous bioactive glass microspheres for bisphosphonate drug delivery. Journal of Materials Science, 2012, 47, 2256-2263.	3.7	40
83	Acidâ€Degradable Hydrogenâ€Cenerating Metalâ€Organic Framework for Overcoming Cancer Resistance/Metastasis and Offâ€Target Side Effects. Advanced Science, 2022, 9, e2101965.	11.2	40
84	Graphitized mesoporous carbon supported Pt–SnO2 nanoparticles as a catalyst for methanol oxidation. Fuel, 2010, 89, 372-377.	6.4	39
85	Synthesis of oxygen-deficient luminescent mesoporous silica nanoparticles for synchronous drug delivery and imaging. Chemical Communications, 2011, 47, 7947.	4.1	38
86	Control of Pore Size of the Bubble-Template Porous Carbonated Hydroxyapatite Microsphere by Adjustable Pressure. Crystal Growth and Design, 2009, 9, 2770-2775.	3.0	37
87	A "Missileâ€Detonation―Strategy to Precisely Supply and Efficiently Amplify Cerenkov Radiation Energy for Cancer Theranostics. Advanced Materials, 2019, 31, e1904894.	21.0	35
88	One-pot self-assembly of mesoporous silica nanoparticle-based pH-responsive anti-cancer nano drug delivery system. Journal of Materials Chemistry, 2011, 21, 15190.	6.7	34
89	Controlled growth and kinetics of porous hydroxyapatite spheres by a template-directed method. Journal of Crystal Growth, 2007, 300, 460-466.	1.5	33
90	Bioinspired Synthesis of Large-Pore, Mesoporous Hydroxyapatite Nanocrystals for the Controlled Release of Large Pharmaceutics. Crystal Growth and Design, 2015, 15, 723-731.	3.0	32

#	Article	IF	Citations
91	Stimuli-responsive poly(ionic liquid) nanoparticles for controlled drug delivery. Journal of Materials Chemistry B, 2020, 8, 7994-8001.	5.8	32
92	Bottom-up tailoring of nonionic surfactant-templated mesoporous silica nanomaterials by a novel composite liquid crystal templating mechanism. Journal of Materials Chemistry, 2009, 19, 6498.	6.7	30
93	Hydrophilic Ultralong Organic Nanophosphors. Small, 2020, 16, e1906733.	10.0	30
94	Novel gasâ€based nanomedicines for cancer therapy. View, 2022, 3, .	5.3	29
95	Synthesis and catalytic activity of mesostructured KF/CaxAl2O(x+3) for the transesterification reaction to produce biodiesel. RSC Advances, 2012, 2, 12337.	3.6	28
96	Nanomaterial-mediated sustainable hydrogen supply induces lateral root formation via nitrate reductase-dependent nitric oxide. Chemical Engineering Journal, 2021, 405, 126905.	12.7	27
97	Pigment identification and decoration analysis of a 5th century Chinese lacquer painting screen: a microâ€Raman and FTIR study. Journal of Raman Spectroscopy, 2009, 40, 1911-1918.	2.5	26
98	Synthesis of a Multinanoparticle-Embedded Core/Mesoporous Silica Shell Structure As a Durable Heterogeneous Catalyst. Langmuir, 2012, 28, 4920-4925.	3.5	25
99	Thermal stability of porous A-type carbonated hydroxyapatite spheres. Materials Letters, 2008, 62, 539-542.	2.6	22
100	Facile Coordination-Precipitation Route to Insoluble Metal Roussin's Black Salts for NIR-Responsive Release of NO for Anti-Metastasis. ACS Applied Materials & Samp; Interfaces, 2017, 9, 36473-36477.	8.0	22
101	Nanocapsule-mediated sustained H2 release in the gut ameliorates metabolic dysfunction-associated fatty liver disease. Biomaterials, 2021, 276, 121030.	11.4	22
102	In-situ carbonization synthesis and ethylene hydrogenation activity of ordered mesoporous tungsten carbide. International Journal of Hydrogen Energy, 2011, 36, 10513-10521.	7.1	21
103	An Activityâ€Based Ratiometric Fluorescent Probe for Inâ€Vivo Realâ€Time Imaging of Hydrogen Molecules. Angewandte Chemie - International Edition, 2022, 61, .	13.8	20
104	Template-directed growth and characterization of flowerlike porous carbonated hydroxyapatite spheres. Crystal Research and Technology, 2007, 42, 460-465.	1.3	19
105	Camptothecin@HMSNs/thermosensitive hydrogel composite for applications in preventing local breast cancer recurrence. Chinese Chemical Letters, 2018, 29, 1819-1823.	9.0	19
106	Therapeutic gas delivery strategies. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1744.	6.1	18
107	Light-triggered nitric oxide release and structure transformation of peptide for enhanced intratumoral retention and sensitized photodynamic therapy. Bioactive Materials, 2022, 12, 303-313.	15.6	18
108	Preparation of Er3+/Yb3+ co-doped zeolite-derived silica glass and its upconversion luminescence property. Ceramics International, 2013, 39, 8865-8868.	4.8	17

#	Article	IF	Citations
109	Nanostructured polyvinylpyrrolidone-curcumin conjugates allowed for kidney-targeted treatment of cisplatin induced acute kidney injury. Bioactive Materials, 2023, 19, 282-291.	15.6	17
110	A novel phosphoester-based cationic co-polymer nanocarrier delivers chimeric antigen receptor plasmid and exhibits anti-tumor effect. RSC Advances, 2018, 8, 14975-14982.	3.6	16
111	New Approaches for Hydrogen Therapy of Various Diseases. Current Pharmaceutical Design, 2021, 27, 636-649.	1.9	16
112	A novel mesoporous carbon@silicon–silica nanostructure for high-performance Li-ion battery anodes. Chemical Communications, 2014, 50, 13944-13947.	4.1	15
113	Facile one-pot synthesis and drug storage/release properties of hollow micro/mesoporous organosilica nanospheres. Materials Letters, 2009, 63, 1943-1945.	2.6	14
114	Preparation and third-order optical nonlinearity of gold nanoparticles incorporated mesoporous TiO_2 thin films. Journal of the Optical Society of America B: Optical Physics, 2009, 26, 107.	2.1	14
115	A novel NIR-responsive CO gas-releasing and hyperthermia-generating nanomedicine provides a curative approach for cancer therapy. Nano Today, 2021, 38, 101197.	11.9	14
116	Novel photo-theranostic GdB6 nanoparticles for fluorescence imaging and NIR-photothermal therapy. Chinese Chemical Letters, 2021, 32, 3487-3490.	9.0	13
117	Facile one-pot synthesis of nanoporous hypercrosslinked hydroxybenzene formaldehyde resins with high surface area and adjustable pore texture. Microporous and Mesoporous Materials, 2010, 131, 141-147.	4.4	12
118	A photothermally responsive nanoprobe for bioimaging based on Edman degradation. Nanoscale, 2016, 8, 10553-10557.	5.6	12
119	Novel nanofibrous membraneâ€supporting stem cell sheets for plasmid delivery and cell activation to accelerate wound healing. Bioengineering and Translational Medicine, 2022, 7, e10244.	7.1	12
120	Selfâ€Amplified Photodynamic Therapy through the ¹ O ₂ â€Mediated Internalization of Photosensitizers from a Ppaâ€Bearing Block Copolymer. Angewandte Chemie, 2020, 132, 3740-3746.	2.0	11
121	1T-Phase Dirac Semimetal PdTe ₂ Nanoparticles for Efficient Photothermal Therapy in the NIR-II Biowindow. ACS Applied Materials & Samp; Interfaces, 2021, 13, 27963-27971.	8.0	11
122	Controlled synthesis and morphological evolution of dendritic porous microspheres of calcium phosphates. Journal of Porous Materials, 2009, 16, 683-689.	2.6	10
123	Efficient Uptake of ¹⁷⁷ Luâ€Porphyrinâ€PEG Nanocomplexes by Tumor Mitochondria for Multimodalâ€Imagingâ€Guided Combination Therapy. Angewandte Chemie, 2018, 130, 224-228.	2.0	10
124	Engineering biocompatible TeSex nano-alloys as a versatile theranostic nanoplatform. National Science Review, 2021, 8, .	9.5	10
125	Enhancement in electrochemical catalytic activity of mesoporous RuOxHy and Pt/RuOxHy by gas treatment. Dalton Transactions, 2009, , 3395.	3.3	9
126	Sulourea-coordinated Pd nanocubes for NIR-responsive photothermal/H2S therapy of cancer. Journal of Nanobiotechnology, 2021, 19, 321.	9.1	9

#	Article	lF	CITATIONS
127	Self-Assembled Nanocomplex for Co-Delivery of Arsenic-Retinoic Acid Prodrug into Acute Promyelocytic Leukemia Cells. Journal of Biomedical Nanotechnology, 2018, 14, 1052-1065.	1.1	6
128	Progress of Precision Nanomedicine-mediated Gas Therapy. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2018, 33, 811.	1.3	4
129	Nitric oxide. Medical Gas Research, 2019, 9, 170.	2.3	4
130	Hydrogen Therapy: Acidâ€Responsive H ₂ â€Releasing 2D MgB ₂ Nanosheet for Therapeutic Synergy and Side Effect Attenuation of Gastric Cancer Chemotherapy (Adv. Healthcare) Tj ETQq0 0	0 r g.B oT /Ov	verløck 10 Tf !
131	RÃ⅓cktitelbild: Glucoseâ€Responsive Sequential Generation of Hydrogen Peroxide and Nitric Oxide for Synergistic Cancer Starvingâ€Like/Gas Therapy (Angew. Chem. 5/2017). Angewandte Chemie, 2017, 129, 1446-1446.	2.0	2
132	Luminescence of Pr-Doped Barium Titanate-Calcium Titanate Material. Ferroelectrics, 2010, 411, 52-57.	0.6	1
133	Photo- and electroluminescence in thin films of covalently bonded azomethin–zinc/SiO2 hybrid materials. Dalton Transactions, 2011, 40, 8510.	3.3	1
134	Correction to Facile Coordination-Precipitation Route to Insoluble Metal Roussin's Black Salts for NIR-Responsive Release of NO for Anti-Metastasis. ACS Applied Materials & Interfaces, 2017, 9, 44258-44258.	8.0	1
135	An Activityâ€Based Ratiometric Fluorescent Probe for Inâ€Vivo Realâ€Time Imaging of Hydrogen Molecules. Angewandte Chemie, 2022, 134, e202114594.	2.0	1
136	A nanoconcrete welding strategy for constructing high-performance wound dressing. Bioactive Materials, 2022, 14, 31-41.	15.6	0