
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7510803/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Acute hyperglycaemia enhances both vascular endothelial function and cardiac and skeletal muscle microvascular function in healthy humans. Journal of Physiology, 2022, 600, 949-962.	1.3	9
2	Predictors of arterial stiffness in adolescents and adults with type 1 diabetes: a cross-sectional study. BMJ Open Diabetes Research and Care, 2022, 10, e002491.	1.2	2
3	Nitric oxide-dependent micro- and macrovascular dysfunction occurs early in adolescents with type 1 diabetes. American Journal of Physiology - Endocrinology and Metabolism, 2022, 322, E101-E108.	1.8	5
4	Metformin prevents endothelial oxidative stress and microvascular insulin resistance during obesity development in male rats. American Journal of Physiology - Endocrinology and Metabolism, 2022, 322, E293-E306.	1.8	12
5	Metformin improves skeletal muscle microvascular insulin resistance in metabolic syndrome. American Journal of Physiology - Endocrinology and Metabolism, 2022, 322, E173-E180.	1.8	9
6	Microvascular Dysfunction in Diabetes Mellitus and Cardiometabolic Disease. Endocrine Reviews, 2021, 42, 29-55.	8.9	108
7	Insulin increases central aortic stiffness in response to hyperglycemia in healthy humans: A randomized four-arm study. Diabetes and Vascular Disease Research, 2021, 18, 147916412110110.	0.9	5
8	Diabetes pathogenesis and management: the endothelium comes of age. Journal of Molecular Cell Biology, 2021, 13, 500-512.	1.5	21
9	Insulin-mediated muscle microvascular perfusion and its phenotypic predictors in humans. Scientific Reports, 2021, 11, 11433.	1.6	4
10	Early Microvascular Dysfunction: Is the Vasa Vasorum a "Missing Link―in Insulin Resistance and Atherosclerosis. International Journal of Molecular Sciences, 2021, 22, 7574.	1.8	10
11	The Insulin Receptor Mediates Insulin's Early Plasma Clearance by Liver, Muscle, and Kidney. Biomedicines, 2021, 9, 37.	1.4	9
12	Hyperglycemia does not inhibit insulin's effects on microvascular perfusion in healthy humans: a randomized crossover study. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E753-E762.	1.8	7
13	Brain Endothelial Cells Regulate Glucagon-Like Peptide 1 Entry Into the Brain via a Receptor-Mediated Process. Frontiers in Physiology, 2020, 11, 555.	1.3	16
14	Perfusion controls muscle glucose uptake by altering the rate of glucose dispersion in vivo. American Journal of Physiology - Endocrinology and Metabolism, 2020, 318, E311-E312.	1.8	4
15	Vasodilatory Actions of Glucagon-Like Peptide 1 Are Preserved in Skeletal and Cardiac Muscle Microvasculature but Not in Conduit Artery in Obese Humans With Vascular Insulin Resistance. Diabetes Care, 2020, 43, 634-642.	4.3	30
16	Inhibiting myeloperoxidase prevents onset and reverses established high-fat diet-induced microvascular insulin resistance. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E1063-E1069.	1.8	9
17	Evidence supports prediabetes treatment. Science, 2019, 364, 341-342.	6.0	18
18	Pannexin 1 Channels as an Unexpected New Target of the Anti-Hypertensive Drug Spironolactone. Circulation Research, 2018, 122, 606-615.	2.0	76

#	Article	IF	CITATIONS
19	Insulin transport into the brain. American Journal of Physiology - Cell Physiology, 2018, 315, C125-C136.	2.1	45
20	Unravelling the regulation of insulin transport across the brain endothelial cell. Diabetologia, 2017, 60, 1512-1521.	2.9	79
21	Diabetic Microvascular Disease: An Endocrine Society Scientific Statement. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 4343-4410.	1.8	323
22	Independent tissue contributors to obesity-associated insulin resistance. JCI Insight, 2017, 2, .	2.3	25
23	Evidence for congruent impairment in micro and macrovascular function in type 1 diabetes. PLoS ONE, 2017, 12, e0187525.	1.1	12
24	Exercise Intensity Modulates Glucose-Stimulated Insulin Secretion when Adjusted for Adipose, Liver and Skeletal Muscle Insulin Resistance. PLoS ONE, 2016, 11, e0154063.	1.1	39
25	Endothelial function following glucose ingestion in adults with prediabetes: Role of exercise intensity. Obesity, 2016, 24, 1515-1521.	1.5	12
26	Liraglutide prevents microvascular insulin resistance and preserves muscle capillary density in high-fat diet-fed rats. American Journal of Physiology - Endocrinology and Metabolism, 2016, 311, E640-E648.	1.8	33
27	Exercise resistance across the prediabetes phenotypes: Impact on insulin sensitivity and substrate metabolism. Reviews in Endocrine and Metabolic Disorders, 2016, 17, 81-90.	2.6	25
28	Modulating Vascular Hemodynamics With an Alpha Globin Mimetic Peptide (HbαX). Hypertension, 2016, 68, 1494-1503.	1.3	26
29	Pathways for insulin access to the brain: the role of the microvascular endothelial cell. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H1132-H1138.	1.5	38
30	Insulin Enhances Endothelial Function Throughout the Arterial Tree in Healthy But Not Metabolic Syndrome Subjects. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 1198-1206.	1.8	54
31	Muscle microvasculature's structural and functional specializations facilitate muscle metabolism. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E379-E387.	1.8	35
32	Inflammation-induced microvascular insulin resistance is an early event in diet-induced obesity. Clinical Science, 2015, 129, 1025-1036.	1.8	46
33	Globular adiponectin ameliorates metabolic insulin resistance via AMPKâ€mediated restoration of microvascular insulin responses. Journal of Physiology, 2015, 593, 4067-4079.	1.3	33
34	The Effect of Exercise Intensity on Endothelial Function in Physically Inactive Lean and Obese Adults. PLoS ONE, 2014, 9, e85450.	1.1	36
35	Glucagon-Like Peptide 1 Recruits Muscle Microvasculature and Improves Insulin's Metabolic Action in the Presence of Insulin Resistance. Diabetes, 2014, 63, 2788-2799.	0.3	57
36	CrossTalk proposal: <i>De novo</i> capillary recruitment in healthy muscle is necessary. Journal of Physiology, 2014, 592, 5129-5131.	1.3	9

#	Article	IF	CITATIONS
37	Rebuttal from Eugene J. Barrett, Michelle A. Keske, Stephen Rattigan and Etto C. Eringa. Journal of Physiology, 2014, 592, 5137-5138.	1.3	1
38	Insulin Regulates Brain Function, but How Does It Get There?. Diabetes, 2014, 63, 3992-3997.	0.3	175
39	The endothelial cell: An "early responder―in the development of insulin resistance. Reviews in Endocrine and Metabolic Disorders, 2013, 14, 21-27.	2.6	68
40	Globular Adiponectin Enhances Muscle Insulin Action via Microvascular Recruitment and Increased Insulin Delivery. Circulation Research, 2013, 112, 1263-1271.	2.0	36
41	Endothelial Cells Actively Concentrate Insulin During its Transendothelial Transport. Microcirculation, 2013, 20, 434-439.	1.0	20
42	Early Microvascular Recruitment Modulates Subsequent Insulin-Mediated Skeletal Muscle Glucose Metabolism During Lipid Infusion. Diabetes Care, 2013, 36, 104-110.	4.3	19
43	Muscle Perfusion. Diabetes, 2012, 61, 2661-2668.	0.3	43
44	Insulinâ€induced Microvascular Recruitment in Skin and Muscle are Related and Both are Associated with Wholeâ€Body Glucose Uptake. Microcirculation, 2012, 19, 494-500.	1.0	68
45	The Vascular Contribution to Insulin Resistance: Promise, Proof, and Pitfalls. Diabetes, 2012, 61, 3063-3065.	0.3	10
46	Which Combination Therapy Is Superior at Reducing Cardiovascular Events in Diabetic Patients with Hypertension?. Current Diabetes Reports, 2011, 11, 151-153.	1.7	0
47	Free Fatty Acids Induce Insulin Resistance in Both Cardiac and Skeletal Muscle Microvasculature in Humans. Journal of Clinical Endocrinology and Metabolism, 2011, 96, 438-446.	1.8	73
48	PS3 - 16. Insulin induced vasoreactivity is dependent on perivascular adipose tissue as well as resistance artery properties after a two-week high fat diet in mice. Nederlands Tijdschrift Voor Diabetologie, 2011, 9, 101-101.	0.0	0
49	Salsalate Attenuates Free Fatty Acid–Induced Microvascular and Metabolic Insulin Resistance in Humans. Diabetes Care, 2011, 34, 1634-1638.	4.3	37
50	Insulin regulates its own delivery to skeletal muscle by feed-forward actions on the vasculature. American Journal of Physiology - Endocrinology and Metabolism, 2011, 301, E252-E263.	1.8	144
51	Angiotensin II Type 1 and Type 2 Receptors Regulate Basal Skeletal Muscle Microvascular Volume and Glucose Use. Hypertension, 2010, 55, 523-530.	1.3	75
52	Muscle Contraction, but Not Insulin, Increases Microvascular Blood Volume in the Presence of Free Fatty Acid–Induced Insulin Resistance. Diabetes, 2009, 58, 2457-2463.	0.3	45
53	Infusing Lipid Raises Plasma Free Fatty Acids and Induces Insulin Resistance in Muscle Microvasculature. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 3543-3549.	1.8	99
54	Abnormal Skeletal Muscle Capillary Recruitment During Exercise in Patients With Type 2 Diabetes Mellitus and Microvascular Complications. Journal of the American College of Cardiology, 2009, 53, 2175-2183.	1.2	111

#	Article	IF	CITATIONS
55	Hyperglycemia and Acute Coronary Syndrome. Circulation, 2008, 117, 1610-1619.	1.6	397
56	Hyperinsulinemia Rapidly Increases Human Muscle Microvascular Perfusion but Fails to Increase Muscle Insulin Clearance: Evidence That a Saturable Process Mediates Muscle Insulin Uptake. Diabetes, 2007, 56, 2958-2963.	0.3	77
57	Contraction Stimulates Nitric Oxide Independent Microvascular Recruitment and Increases Muscle Insulin Uptake. Diabetes, 2007, 56, 2194-2200.	0.3	69
58	Skeletal muscle capillary responses to insulin are abnormal in late-stage diabetes and are restored by angiogensin-converting enzyme inhibition. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E1804-E1809.	1.8	75
59	Mixed meal and light exercise each recruit muscle capillaries in healthy humans. American Journal of Physiology - Endocrinology and Metabolism, 2006, 290, E1191-E1197.	1.8	160
60	Obesity Blunts Insulin-Mediated Microvascular Recruitment in Human Forearm Muscle. Diabetes, 2006, 55, 1436-1442.	0.3	262
61	The vascular endothelial cell mediates insulin transport into skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2006, 291, E323-E332.	1.8	78
62	Insulin at Physiological Concentrations Selectively Activates Insulin But Not Insulin-Like Growth Factor I (IGF-I) or Insulin/IGF-I Hybrid Receptors in Endothelial Cells. Endocrinology, 2005, 146, 4690-4696.	1.4	131
63	Skeletal muscle contraction stimulates capillary recruitment and glucose uptake in insulin-resistant obese Zucker rats. American Journal of Physiology - Endocrinology and Metabolism, 2004, 287, E804-E809.	1.8	55
64	Microvascular Recruitment Is an Early Insulin Effect That Regulates Skeletal Muscle Glucose Uptake In Vivo. Diabetes, 2004, 53, 1418-1423.	0.3	367
65	The American Diabetes Association, the American Cancer Society, and the American Heart Association: A triumvirate of hope for the nation's health. Diabetes Care, 2004, 27, 1789-1790.	4.3	3
66	The vasodilatory actions of insulin on resistance and terminal arterioles and their impact on muscle glucose uptake. Diabetes/Metabolism Research and Reviews, 2004, 20, 3-12.	1.7	91
67	Blood flow and muscle metabolism: a focus on insulin action. American Journal of Physiology - Endocrinology and Metabolism, 2003, 284, E241-E258.	1.8	293
68	TNF-α acutely inhibits vascular effects of physiological but not high insulin or contraction. American Journal of Physiology - Endocrinology and Metabolism, 2003, 285, E654-E660.	1.8	54
69	Insulin's effect on glucose production: direct or indirect?. Journal of Clinical Investigation, 2003, 111, 434-435.	3.9	7
70	Insulin-Mediated Hemodynamic Changes Are Impaired in Muscle of Zucker Obese Rats. Diabetes, 2002, 51, 3492-3498.	0.3	122
71	Heterogeneity of laser Doppler flowmetry in perfused muscle indicative of nutritive and nonnutritive flow. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H1324-H1333.	1.5	21
72	Insulin stimulates laser Doppler signal by rat muscle in vivo, consistent with nutritive flow recruitment. Clinical Science, 2001, 100, 283-290.	1.8	45

#	Article	IF	CITATIONS
73	Physiological Hyperinsulinemia Stimulates p70 ^{S6k} Phosphorylation in Human Skeletal Muscle ¹ . Journal of Clinical Endocrinology and Metabolism, 2000, 85, 4900-4904.	1.8	21
74	Insulin and glucose suppress hepatic glycogenolysis by distinct enzymatic mechanisms. Metabolism: Clinical and Experimental, 1993, 42, 1546-1551.	1.5	24
75	Utilizing Standardized Patients to Enhance Health Literacy Communication Skills. MedEdPORTAL: the Journal of Teaching and Learning Resources, 0, , .	0.5	3